Special Coverage

High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Lightweight Internal Device to Measure Tension in Hollow- Braided Cordage
System, Apparatus, and Method for Pedal Control
Dust Tolerant Connectors
Home

Lens-Coupled Dielectric Waveguides

Small, lightweight, low-power interconnect solution with improved reliability and reduced packaging complexity. NASA’s Jet Propulsion Laboratory, Pasadena, California NASA’s Jet Propulsion Laboratory has developed a low-loss dielectric waveguide that provides a simple, versatile, and flexible transmission medium. Dielectric waveguides — long, solid pieces of dielectric that confine electromagnetic waves — offer high bandwidth and low transmission loss compared to conventional metallic waveguides. Despite these advantages, practical use of these waveguides has been limited because a large fraction of signal power is lost at the state-of-the-art interconnects joining conventional metallic waveguides and dielectric waveguides. JPL’s interconnect solution uses lens coupling to reduce these losses by a factor of 10 or more, yielding a reliable, cost-effective alternative to conventional waveguides.

Posted in: Briefs, Electronics & Computers

Read More >>

Sampling and Control Circuit Board for an Inertial Measurement Unit

John H. Glenn Research Center, Cleveland, Ohio Scientists at NASA’s Glenn Re - search Center have developed a circuit board that serves as a control and sampling interface to an inertial measurement unit (IMU). The circuit board provides sampling and communication abilities that allow the IMU to be sampled at precise intervals. The data is minimally processed onboard and returned to a separate processor for inclusion in an overall system. The circuit board allows the normal overhead associated with IMU data collection to be performed outside of the system processor, freeing up time to run intensive algorithms in parallel. This Glenn technology consists of the circuit schematic, board layout, and microcontroller firmware for the IMU sampling and control circuit board.

Posted in: Briefs, Electronics & Computers

Read More >>

High Field Superconducting Magnets

Applications include MRI machines, mass spectrometers, and particle accelerators. Goddard Space Flight Center, Greenbelt, Maryland A modified coil winding machine for small-diameter wire being used to enable higher packing densities for the superconducting magnets. This superconducting magnet developed at NASA Goddard Space Flight Center comprises a superconducting wire wound in adjacent turns about a mandrel to form the superconducting magnet; a thermally conductive potting material configured to fill interstices between the adjacent turns; and a voltage limiting device disposed across each end of the superconducting wire, and is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet. The thermally conductive potting material and the superconducting wire provide a path for dissipation of heat.

Posted in: Briefs, Electronics & Computers

Read More >>

Coming Soon - Compact Vibration Damper

Do you have a need to reduce vibration in high performance structures? Then, you’ll want to attend this NASA Tech Briefs Webinar!NASA Langley Research Center has developed a compact tuned damper that reduces vibration occurring at a fixed frequency. Structural vibrations frequently need to be damped to prevent damage to a structure. Tuned dampers reduce vibration of the base structure by the dissipation of energy. The magnitude of the dissipated energy is proportional to the square of the displacement or velocity of the tuned mass, which in turn is proportional to the range of motion.

Posted in: Upcoming Webinars

Read More >>

Smart Image Enhancement Process

Applications include improving pilot vision, real-time digital enhancement of videos, medical imaging, and thermal and night vision for surveillance systems. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center researchers have developed an automatic measurement and control method for smart image enhancement. Pilots, doctors, and photographers will benefit from this innovation that offers a new approach to image processing. Initial advantages will be seen in improved medical imaging and nighttime photography. Standard image enhancement software is unable to improve poor quality conditions such as low light, poor clarity, and fog-like conditions. The technology consists of a set of comprehensive methods that performs well across a wide range of conditions encountered in arbitrary images. Conditions include large variations in lighting, scene characteristics, and atmospheric (or underwater) turbidity variations. NASA is seeking market insights on commercialization of this new technology, and welcomes interest from potential producers, users, and licensees.

Posted in: Briefs, Imaging

Read More >>

Compact Thermal Neutron Imaging System Using Axisymmetric Focusing Mirrors

This technology uses grazing incidence reflective optics to produce focused beams of neutrons from commercially available sources. Marshall Space Flight Center, Alabama NASA’s Marshall Space Flight Center has developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high-performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10 m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm-diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

Posted in: Briefs, Imaging

Read More >>

Two- and Three-Dimensional Near-Infrared Subcutaneous Structure Imager Using Adaptive Nonlinear Video Processing

The battery-powered system uses off-the-shelf near-infrared technology that is not affected by melanin content, and can also operate in dark environments. John H. Glenn Research Center, Cleveland, Ohio Scientists at NASA’s Glenn Research Center have successfully developed a novel subcutaneous structure imager for locating veins in challenging patient populations, such as juvenile, elderly, dark-skinned, or obese patients. Spurred initially by the needs of pediatric sickle-cell anemia patients in Africa, Glenn’s groundbreaking system includes a camera-processor-display apparatus and uses an innovative image-processing method to provide two- or three-dimensional, high-contrast visualization of veins or other vasculature structures. In addition to assisting practitioners to find veins in challenging populations, this system can also help novice healthcare workers locate veins for procedures such as needle insertion or excision. Compared to other state-of-the-art solutions, the imager is inexpensive, compact, and very portable, so it can be used in remote third-world areas, emergency response situations, or military battlefields.

Posted in: Briefs, Imaging

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.