2008

Chamber for Aerosol Deposition of Bioparticles

Standard coupons can be covered with reproducible areal concentrations of bioparticles.

The laboratory apparatus shown in the figure is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles.

Image
This Bioparticle-Deposition Chamber is sized to fit on a laboratory bench and to fit within a standard class-II biological safety cabinet.

The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column.

To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced 210Po antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent accumulation of electric charge on them, they are spray-coated with an anti-static material. During use, the base plate and the sides and top of the chamber are grounded as a further measure to minimize the buildup of electric charge.

This work was done by Roger Kern and Larry Kirschner of Caltech for NASA’s Jet Propulsion Laboratory.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Refer to NPO-42191, volume and number of this NASA Tech Briefs issue, and the page number.

This Brief includes a Technical Support Package (TSP).

Chamber for Aerosol Deposition of Bioparticles (reference NPO-42191) is currently available for download from the TSP library.

Please Login at the top of the page to download.