2008

Molecules for Fluorescence Detection of Specific Chemicals

These molecules could be used in the detection of chemical warfare agents.

A family of fluorescent dye molecules has been developed for use in “on-off” fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases.

A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched.

The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at wavelengths of about 600 nm.

This work was done by Michael A. Meador of Glenn Research Center and Daniel S. Tyson and Ulvi F. Ilhan of Ohio Aerospace Institute. For more information, download the Technical Support Package (free white paper) at www.techbriefs.com/tsp under the Materials category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18059-1.

This Brief includes a Technical Support Package (TSP).

Molecules for Fluorescence Detection of Specific Chemicals (reference LEW-18059-1) is currently available for download from the TSP library.

Please Login at the top of the page to download.

 

White Papers

Oscilloscope Fundamentals Primer
Sponsored by Rohde and Schwarz
Estimating the Effort and Cost of a DO-254 Program
Sponsored by Logic Circuit
An Improved Method for Differential Conductance Measurements
Sponsored by Keithley Instruments
Fundamentals of Vector Network Analysis Primer
Sponsored by Rohde and Schwarz A and D
High-Speed A/Ds for Real-Time Systems
Sponsored by Pentek
White Paper: MIL-STD-1553 IP Cores - An Emerging Technology
Sponsored by Sealevel

White Papers Sponsored By: