Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20–50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired.

With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications.

A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

This work was performed by Trent Smith and Martha Williams of Kennedy Space Center. For further information, contact the Kennedy Innovative Partnerships Office at (321) 861-7158.

White Papers

Antenna Basics
Sponsored by Rohde and Schwarz
How New Angular Positioning Sensor Technology Opens A Broad Range of New Applications
Sponsored by Novotechnik
Domestic Versus Offshore PCB Manufacturing
Sponsored by Sunstone Circuits
3D Visualization: The Key to Improving Time to Market for High-Tech Products
Sponsored by SAP
How to Avoid Bearing Corrosion
Sponsored by Kaydon
The Road to Lightweight Vehicles
Sponsored by HP

White Papers Sponsored By: