2008

Predicting Properties of Unidirectional-Nanofiber Composites

A theory for predicting mechanical, thermal, electrical, and other properties of unidirectional- nanofiber/matrix composite materials is based on the prior theory of micromechanics of composite materials. In the development of the present theory, the prior theory of micromechanics was extended, through progressive substructuring, to the level of detail of a nanoscale slice of a nanofiber. All the governing equations were then formulated at this level.

The substructuring and the equations have been programmed in the ICAN/JAVA computer code, which was reported in “ICAN/JAVA: Integrated Composite Analyzer Recoded in Java” (LEW-17247), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 36. In a demonstration, the theory as embodied in the computer code was applied to a graphite-nanofiber/epoxy laminate and used to predict 25 properties. Most of the properties were found to be distributed along the through-the-thickness direction. Matrix-dependent properties were found to have bimodal through-the-thickness distributions with discontinuous changes from mode to mode.

This work was done by Christos C. Chamis, Louis M. Handler, and Jane Manderscheid of Glenn Research Center.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18366-1.

White Papers

Uncooled Infrared Imaging: Higher Performance, Lower Costs
Sponsored by Sofradir EC
Estimating the Effort and Cost of a DO-254 Program
Sponsored by Logic Circuit
A Brief History of Modern Digital Shaker Controllers
Sponsored by Crystal Instruments
Aqueous Critical Cleaning: A White Paper
Sponsored by Alconox
IEC 61131-3 Now in Motion
Sponsored by Trio Motion
Navigating the Intellectual Property Roadblocks to Open Innovation
Sponsored by e Zassi

White Papers Sponsored By: