2009

Pressure-Energized Seal Rings To Better Withstand Flows

Exposed lips that can be grabbed by flows

Pressure-energized seal rings intended to withstand flows better than do conventional pressure-energized seal rings have been conceived. The concept applies, more specifically, to seal rings used on some valve stems, pistons, and the like. A conventional pressure-energized seal ring generally has a U-shaped cross section and consists of an elastomer or other suitable polymer with an embedded metal energizing spring (see Figure 1). The working fluid from the high-pressure side that one seeks to seal is allowed into the U-shaped cavity, so that the pressure pushes the sides of the seal ring tighter against the gland and body sealing surfaces, thereby increasing the degree of sealing. Unfortunately, when the seal ring is exposed to flow of the working fluid, under some conditions, the flow grabs the lip of the U-shaped cross section and ejects or deforms the seal ring so that, thereafter, a proper seal is not obtained.

altFigure 2 depicts one of several alternative seal rings according to the present concept. One element of the concept is to modify the U-shaped cross section from that of the corresponding conventional seal ring to eliminate the exposed lip and prevent entry of the working fluid into the U-shaped cavity. Unlike in the conventional seal, pressurized fluid would not push the seal ring directly against the both gland and body sealing surfaces. Instead, the pressure would directly push the seal ring against a gland sealing surface only. In so doing, the pressure would squash the seal ring into a smaller volume bounded by the gland and body sealing surfaces, and would thereby indirectly press the seal ring more tightly against the body sealing surface.

altTo enhance the desired squashing deformation, a spring having an approximately parallelogram cross section would be embedded in the modified U-shaped cavity. As the pressure pushed two corners of the approximate parallelogram closer together along the axis of the seal ring, the other two corners of the approximate parallelogram would be pushed farther apart along a radius of the ring, thereby causing the polymeric ring material to push radially harder against the body sealing surface. From the radially innermost corner of the approximate parallelogram, the spring material would extend radially, then axially into recesses in the seal gland. These extensions would help to restrain the seal ring against ejection.

White Papers

Serial Fabrics Improve System Design
Sponsored by Pentek
Free Guide to High Performance Switching
Sponsored by Keithley
Learn LED Test Techniques
Sponsored by Keithley
Using Linux in Medical Devices: What Developers and Manufacturers Need to Know
Sponsored by Wind River
Selection of Materials for Medical Applications
Sponsored by RTP
Measurement of Harmonics using Spectrum Analyzers
Sponsored by Rohde and Schwarz A and D

White Papers Sponsored By: