2009

Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

This technique has potential use in the fields of disease state identification, cancer screening and detection, and wound healing.

Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include:

  • Area (total numbers of non-background pixels inside and including theperimeter),
  • Bounding Box (smallest rectangle that bounds and object),
  • centerX    (x-coordinate    of    intensity-weighted, center-of-mass of an entire object or multi-object blob),
  • centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), • Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels),
  • Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated),
  • Ext_vector (extremal vector), • Major Axis (the length of a major axis of a smallest ellipse encompassing an object), • Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object),
  • Partial (indicates if the particle extends beyond the field of view), • Perimeter Points (points that make up a particle perimeter),
  • Roundness [(4π × area)/perimeter2) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.],
  • Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped),
  • Theta (orientation of the major axis),
  • Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked.

altThese metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

This work was done by Mark McDowell of Glenn Research Center and Elizabeth Gray of Scientific Consulting, Inc. For more information, download the Technical Support Package (free white paper) at www.techbriefs.com/tsp under the Information Sciences category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18291-1.

This Brief includes a Technical Support Package (TSP).

Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System (reference LEW-18291-1) is currently available for download from the TSP library.

Please Login at the top of the page to download.

 

White Papers

Reverse Engineering
Sponsored by Servometer
3D Printing with FDM: How it Works
Sponsored by Stratasys
Design Considerations to Meet the Urgent Demand for Miniaturization of Electronics in Military Applications
Sponsored by Fischer Connectors
Meeting Industry Standards for Sanitation in The Food Industry
Sponsored by Able Electropolishing
Building a Test System for High-Speed Data Streaming Applications
Sponsored by ADLINK Technology
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions

White Papers Sponsored By: