From Aircraft Wings to Wind Turbine Blades: NASA Software Comes Back to Earth with Green Energy Applications

You might think a wind turbine would have more in common with a plane’s propeller than an aircraft wing, but wind blades actually behave a lot more like wings than props. This fact has enabled a valuable spinoff from aerospace to wind energy involving the first software that NASA ever allowed to be commercialized as part of the Agency’s ongoing effort to transfer technology to U.S. business and industry.

Figure 1. Structural sizing and design optimization software first developed inside NASA has been used on aircraft as well as space vehicles such as the Composite Crew Module shown here.
As a Lockheed Engineering and Sciences contractor in the late 1980s, I was one of the original NASA Langley Research Center developers of a software code, ST-SIZE, which was first used at the Center for structural sizing and design optimization for a new, high-speed aircraft. The software tool works in a feedback loop with finite element analysis (FEA) to automatically search for composite (or metal) solutions that minimize weight while maximizing manufacturability.

Since NASA allowed me to commercialize (and rename) HyperSizer software in 1994, Collier Research Corporation has continued to work closely with NASA and associated contractors on numerous other aircraft- and space-related projects. NASA’s Crew Launch Vehicle, the Ares I; Heavy Lift Vehicle, Ares V; and the Composite Crew Module (Figure 1) were all designed for zero-failure performance with the aid of HyperSizer. The software has also been used in the design of business jets such as Bombardier’s LearJet, commercial transport planes such as the Cseries, and long-duration, high-altitude aircraft like Scaled Composites Global Flyer piloted by Steve Fossett (Figure 2).

If you look at a traditional aircraft wing, and then imagine the design thought that stretches it into the very long, slender wing of the Global Flyer, you can see that it’s all about lift and low drag at slow speed. And it’s not a big structural step from that wing to a wind turbine blade. Now think about the ever-increasing scale of wind turbines dictated by market pressures for greater economic efficiencies. Add materials advances in composites and hybrid laminates, and you can see how expertise in new-generation aircraft wing design and advanced analyses translates logically into wind blade engineering.

However, in the booming wind energy market, the “bigger is better” mantra is already coming up against reliability issues. Even today’s current standard (33-40 meter, 1.5 MW) wind blades see an average failure rate of 20 percent, according to Sandia National Laboratories’ estimates. Sandia conducts ongoing applied research in conjunction with academia and industry to increase the viability of wind technology by improving turbine performance, and has hosted annual wind blade workshops since 2004.

Design and Performance

Figure 2. The long, slender wing of Steve Fossett’s Global Flyer was designed to maximize lift and minimize drag. Similar aerodynamic principles apply to the structure of a wind turbine blade and can be used to guide design decisions.
Fortunately, for the engineering community, design solutions to performance issues involving wind turbine blades parallel techniques already in use for aircraft wings: the way blades behave, and structurally fail, make them suitable for analytical methods that have matured over decades in aerospace. For example, while smaller wind blades used to power homes rotate faster than the standard blades used by utilities, as blades get bigger, rotation speed decreases and the primary required design load changes from centripetal force to flap-wise lift that can be analyzed like an aircraft wing. Furthermore, the aeroelastic effects of larger wind blade-tip deflection, and resulting load-change issues, can be compensated for with stiffer, stronger materials in much the same way as aircraft wing-tip deflection is controlled. Although these materials need to be as lightweight as possible, stiffness and buckling stability become even higher priorities as blade (or wing) length increases. And fatigue life remains an issue for any component operating in harsh environments over long periods of time.


White Papers

Basics of Electric Heaters
Sponsored by Hotwatt
Reducing Development Cycles for 3U VPX Systems
Sponsored by Curtiss-Wright Controls Embedded Computing
Magnetics Design: Specification, Performance & Economics
Sponsored by Datatronics
Introduction into Theory of Direction Finding
Sponsored by Rohde & Schwarz A&D
Driving Auto Performance Through Lubricant Selection
Sponsored by Krytox
Integrated Epoxy Feedthroughs Improve Fuel Pump Reliability
Sponsored by Douglas Electrical Components

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.