Orbital Winch for High-Strength, Space-Survivable Tethers

An Orbital Winch mechanism enables high-load, multi-line tethers to be deployed and retracted without rotating the spool on which the tether is wound. To minimize damage to the tether and the wound package during retraction or deployment under load, it can incorporate a Tension Management Module that reduces the infeed tension by a factor of 15 through the use of a powered capstan with guide rollers. This design eliminates the need for rotating high-voltage electrical connections in tether systems that use propellantless electro-dynamic propulsion. It can also eliminate the need for rotating optical connections in applications where the tether contains optical fibers.

This winch design was developed to deploy a 15-km-long, 15-kg high-strength Hoytether structure incorporating conductive wires as part of the MXER-1 demonstration mission concept. Two slewing rings that orbit around the tether spool, combined with translation of one of the slewing rings back and forth along the spool axis to traverse the wind point, enables the winch to wind the tether. Variations of the traverse motion of the slewing ring can accomplish level winds and conical pirn winds. By removing the non-traversing slewing ring, and adding an actuated guide arm, the winch can manage rapid, low-drag deployment of a tether off the end of a pirn-wound spool, followed by controlled retraction and rewinding, in a manner very similar to a spin-casting reel. The winch requires at least two motor driver controller units to coordinate the action of two stepper motors to accomplish tether deployment or retraction.

This work was done by Robert Hoyt, Ian Barnes, Jeffrey Slostad, and Scott Frank of Tethers Unlimited, Inc. for Marshall Space Flight Center. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at This email address is being protected from spambots. You need JavaScript enabled to view it.. Refer to MFS-32589-1.

White Papers

Refractory Metal Fasteners for Extreme Conditions: The Basics
Sponsored by Goodfellow
Gearing Up for Parametric Test’s High Voltage Future
Sponsored by Keithley Instruments
3D Printing in Space: The Next Frontier
Sponsored by Stratasys
Designing Ring Projections for Hermetic Sealing
Sponsored by Miyachi Unitek
IEC 61131-3 Now in Motion
Sponsored by Trio Motion
Comparison of Interface Pressure Measurement Options
Sponsored by Tekscan

White Papers Sponsored By: