2010

Nonlinear Combustion Instability Prediction

The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

New methods for predicting stability have been created based on a detailed physical understanding of the combustion instability problem, which has resulted in a computationally predictive algorithm that allows determination of pressure oscillation frequencies and geometry, growth rates for component modes of oscillation, development of steepened wave structures, limit (maximum) amplitude of oscillations, and changes in mean operation chamber conditions.

The program accommodates any combustion-chamber shape. The program can run on desktop computer systems, and is readily upgradeable as new data become available.

This program was written by Gary Flandro of the University of Tennessee, Space Institute, Calspan Center, for Marshall Space Flight Center. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at This email address is being protected from spambots. You need JavaScript enabled to view it.. Refer to MFS-32549-1.

White Papers

The Ultimate Shaft-To-Hub Connection
Sponsored by Stoffel Polygon
Recruit Or Retain Report
Sponsored by Aerotek
Designing Ring Projections for Hermetic Sealing
Sponsored by Miyachi Unitek
Optimizing an Electromechanical Device with Multidimensional Analysis Software
Sponsored by Integrated Engineering Software
Finding the Right Manufacturer for Your Design
Sponsored by Sunstone Circuits
How To Guide for the Most Common Measurements
Sponsored by National Instruments

White Papers Sponsored By: