2010

Nonlinear Combustion Instability Prediction

The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

New methods for predicting stability have been created based on a detailed physical understanding of the combustion instability problem, which has resulted in a computationally predictive algorithm that allows determination of pressure oscillation frequencies and geometry, growth rates for component modes of oscillation, development of steepened wave structures, limit (maximum) amplitude of oscillations, and changes in mean operation chamber conditions.

The program accommodates any combustion-chamber shape. The program can run on desktop computer systems, and is readily upgradeable as new data become available.

This program was written by Gary Flandro of the University of Tennessee, Space Institute, Calspan Center, for Marshall Space Flight Center. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at This email address is being protected from spambots. You need JavaScript enabled to view it.. Refer to MFS-32549-1.

White Papers

Avoiding Common Mistakes in Extractables/Leachables Program Design
Sponsored by wuxi apptec
Determining an Effective Analog Sampling Rate
Sponsored by Sealevel
Free Guide to High Performance Switching
Sponsored by Keithley
Noncontact Differential Impedance Transducer
Sponsored by Kaman
Flexible, High-Resolution Position/Displacement for OEM Applications
Sponsored by Kaman
Antenna Basics
Sponsored by rohde and schwarz a and d

White Papers Sponsored By: