2010

Triaxial Swirl Injector Element for Liquid-Fueled Engines

The design is amenable to low-cost production.

A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition.

The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene.

Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high-frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector.

The hydraulic atomization characteristics of the innovation allow the design to be rapidly scaled from small in-space applications [500–5,000 lbf (2.2–22.2 kN)] to large thrust engine applications [80,000 lbf (356 kN) and beyond]. The triaxial injector is also less sensitive to eccentricities, manufacturing tolerances, and gap width of many traditional coaxial and pintle injector designs.

The triaxial-injector injection orifice configuration provides for high injection stiffness. The low parts count and relatively large injector design features are amenable to low-cost production.

This work was done by Jeff Muss of Sierra Engineering Inc. for Marshall Space Flight Center. For more information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at This email address is being protected from spambots. You need JavaScript enabled to view it.. Refer to MFS-32717-1.