A methodology allows the experimental design of novel peptides and RNAs that have desired properties.

A process has been developed that can confer novel properties, such as metal resistance, to a host bacterium. This same process can also be used to produce RNAs and peptides that have novel properties, such as the ability to bind particular compounds. It is inherent in the method that the peptide or RNA will behave as expected in the target organism. Plasmid-born mini-gene libraries coding for either a population of combinatorial peptides or stable, artificial RNAs carrying random inserts are produced. These libraries, which have no bias towards any biological function, are used to transform the organism of interest and to serve as an initial source of genetic variation for stress-driven evolution.

The transformed bacteria are propagated under selective pressure in order to obtain variants with the desired properties. The process is highly distinct from in vitro methods because the variants are selected in the context of the cell while it is experiencing stress. Hence, the selected peptide or RNA will, by definition, work as expected in the target cell as the cell adapts to its presence during the selection process. Once the novel gene, which produces the sought phenotype, is obtained, it can be transferred to the main genome to increase the genetic stability in the organism. Alternatively, the cell line can be used to produce novel RNAs or peptides with selectable properties in large quantity for separate purposes. The system allows for easy, large-scale purification of the RNAs or peptide products.

The process has been reduced to practice by imposing sub-inhibitory concentrations of NiCl2 on cells of the bacterium Escherichia coli that were transformed separately with the peptide library and RNA library. The evolved resistant clones were isolated, and sequences of the selected mini-gene variants were established. Clones resistant to NiCl2 were found to carry identical plasmid variants with a functional mini-gene that specifically conferred significant nickel tolerance on the host cells. Sequencing of the selected mini-gene revealed a propensity of the encoded peptide to bind transient metal ions. Expression of the mini-gene markedly improved growth parameters of the evolved clones at sub-inhibitory concentrations of NiCl2 while being slightly detrimental in the absence of stress. Similar results have been obtained with the RNA libraries.

Overall, the results demonstrate a very natural outcome of the selection experiments in which the mini-genes were expected to be either successfully integrated into bacterial genetic networks, or rejected depending upon their effect on host fitness. This described approach can be useful as a laboratory model to study the dynamics of bacterial adaptive evolution on the molecular level. It can also provide a strategy for screening expressed DNA libraries in search of novel genes with desirable properties.

This work was done by George E. Fox, Victor G. Stepanov, and Yamei Liu of the University of Houston/College of Natural Sciences & Mathematics for Johnson Space Center.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

Office of Intellectual Property Management University of Houston 316 E. Cullen Houston, TX 77204-2015

Phone No.: (713) 743-9155 www.research.uh.edu

Refer to MSC-24230-1, volume and number of this NASA Tech Briefs issue, and the page number.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.