2011

Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nanotubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nanotube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes
require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation.

In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

This work was done by John Hagopian, Stephanie Getty, and Manuel Quijada of Goddard Space Flight Center. GSC-16016-1

White Papers

Electropolishing for the Aerospace Industry
Sponsored by Able Electropolishing
Survival of the fittest - the process control imperative
Sponsored by Renishaw
Protecting the Sky
Sponsored by Rohde & Schwarz A&D
Adapt or Die: Making the Case for Resilient PLM
Sponsored by Aras
Reducing Development Cycles for 3U VPX Systems
Sponsored by Curtiss-Wright Controls Embedded Computing
Multi-channel, Multi-board Coherency for SWaP-Constrained SIGINT and EW
Sponsored by Curtiss-Wright Controls Embedded Computing

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.