Commercial applications include telescopes, binoculars, night vision goggles, and other optical devices that benefit from stray light suppression.

Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 °C nanotube growth process.

The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use.

Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance.

The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude.

The purpose of the innovation is to provide an enhanced stray light control capability by making a blacker surface treatment for typical stray light control components. Since baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it was critical to develop this surface treatment on structural materials. The innovation is to optimize the carbon nanotube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use.

The titanium substrate carbon nanotubes are more robust than those grown on silicon and allow for easier utilization. They are darker than current surface treatments over larger angles and larger wavelength range. The primary advantage of titanium substrate is that it is a good structural material, and not as brittle as silicon.

This work was done by John Hagopian, Stephanie Getty, and Manuel Quijada of Goddard Space Flight Center. GSC-16247-1

White Papers

Radar Waveforms for A&D and Automotive Radar
Sponsored by Rohde and Schwarz AD
Control System Basics with Jon Titus
Sponsored by Sealevel
Model-Driven Innovation in Machine Design
Sponsored by Maplesoft
Case Study: High Tech – Virtualized Computing Platform
Sponsored by Arena Solutions
Algorithms for Change Point Analysis
Sponsored by Numerical Algorithms Group
How to Prevent Step Losses with Stepper Motors
Sponsored by MICROMO

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.