Fabrication of a Kilopixel Array of Superconducting Microcalorimeters With Microstripline Wiring

A document describes the fabrication of a two-dimensional microcalorimeter array that uses microstrip wiring and integrated heat sinking to enable use of high-performance pixel designs at kilo - pixel scales (32×32). Each pixel is the high-resolution design employed in small-array test devices, which consist of a Mo/Au TES (transition edge sensor) on a silicon nitride membrane and an electroplated Bi/Au absorber. The pixel pitch within the array is 300 microns, where absorbers 290 microns on a side are cantilevered over a silicon support grid with 100-micron-wide beams. The high-density wiring and heat sinking are both carried by the silicon beams to the edge of the array. All pixels are wired out to the array edge.

ECR (electron cyclotron resonance) oxide underlayer is deposited underneath the sensor layer. The sensor (TES) layer consists of a superconducting underlayer and a normal metal top layer. If the sensor is deposited at high temperature, the ECR oxide can be vacuum annealed to improve film smoothness and etch characteristics.

This process is designed to recover high-resolution, single-pixel x-ray microcalorimeter performance within arrays of arbitrarily large format. The critical current limiting parts of the circuit are designed to have simple interfaces that can be independently verified. The lead-to-TES interface is entirely determined in a single layer that has multiple points of interface to maximize critical current. The lead rails that overlap the TES sensor element contact both the superconducting underlayer and the TES normal metal.

This work was done by James Chervenak of Goddard Space Flight Center. GSC-15915-1

This Brief includes a Technical Support Package (TSP).

Fabrication of a Kilopixel Array of Superconducting Microcalorimeters With Microstripline Wiring (reference GSC-15915-1) is currently available for download from the TSP library.

Please Login at the top of the page to download.


White Papers

Finding the Right Manufacturer for Your Design
Sponsored by Sunstone Circuits
Enabling Complex Applications with a Dual Node Single Board Computer
Sponsored by curtiss wright
Antenna Basics
Sponsored by rohde and schwarz a and d
Wire Springs versus Machined Springs A Comparison
Sponsored by helical
Achieve Better Process Controls with Light Cure Technology
Sponsored by dymax
Why bigger isn’t always better: the case for thin section bearings
Sponsored by Kaydon

White Papers Sponsored By: