Carbon Nanotube Bonding Strength Enhancement Using Metal “Wicking” Process

Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nanotubes (CNTs) through a “wicking” process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement.

Classical capillary theory would not normally allow materials that do not “wet” carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90°. However, capillary action can be induced through JPL’s ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

This work was done by James L. Lamb, Matthew R. Dickie, Robert S. Kowalczyk, and Anna Liao of Caltech; and Michael J. Bronikowski of Atomate Corporation for NASA’s Jet Propulsion Laboratory.  NPO-46594

This Brief includes a Technical Support Package (TSP).

Carbon Nanotube Bonding Strength Enhancement Using Metal “Wicking” Process (reference NPO-46594) is currently available for download from the TSP library.

Please Login at the top of the page to download.


White Papers

Linear Motors Application Guide
Sponsored by Aerotech
White Paper: Computer System Design for Critical Applications
Sponsored by Sealevel
Envelope Tracking and Digital Pre-Distortion Test Solution for RF Amplifiers
Sponsored by Rohde and Schwarz A and D
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions
The True Cost of Bearing Lubrication
Sponsored by igus
Guidelines for Ensuring PCB Manufacturability
Sponsored by Sunstone Circuits

White Papers Sponsored By: