2012

Microgravity Passive Phase Separator

There are no moving parts and there are no failure modes that involve fluid loss.

A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless-steel screens (25-μm nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force.

Microgravity Passive Phase Separator" class="caption" align="right">Gas bubbles of a given size will form a “front” that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris.

The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface area of the separating screen. Additionally, there are no moving parts, and there are no failure modes that involve fluid loss. A patent application has been filed.

This work was done by Matthew Paragano, William Indoe, and Jeffrey Darmetko of Hamilton Sundstrand for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809.

Title to this invention has been waived under the provisions of the National Aeronautics and Space Act {42 U.S.C. 2457(f)} to Hamilton Sundstrand. Inquiries concerning licenses for its commercial development should be addressed to:

  Hamilton Sundstrand
  Space Systems International, Inc.
  One Hamilton Road
  Windsor Locks, CT 06096-1010
  Phone No.: (860) 654-6000

MSC-25058-1