In Situ Potassium-Argon Geochronology Using Fluxed Fusion and a Double Spike

A document highlights an Li-based fluxing agent that enables sample fusion and quantitative Ar-release at relatively low temperatures (900–1,000 ºC), readily achievable with current flight resistance furnace designs. A solid, double spike containing known quantities of 39Ar and 41K was developed that, when added in known amounts to a sample, enables the extraction of a 4040K ratio for age estimation without a sample mass measurement.

The use of a combination of a flux and a double spike as a means of solving the mechanical hurdles to an in situ K-Ar geochronology measurement has never been proposed before. This methodology and instrument design would provide a capability for assessing the ages of rocks and minerals on the surfaces of planets and other rocky terrestrial bodies in the solar system.

This work was done by Joel A. Hurowitz, Michael H. Hecht, Wayne F. Zimmerman, Evan L. Neidholdt, Mahadeva P. Sinha, Wolfgang Sturhahn, Max Coleman, Daniel J. McCleese, Kenneth A. Farley, John M. Eiler, and George R. Rossman of Caltech, and Kathryn Waltenberg of the University of Queensland, Australia, for NASA’s Jet Propulsion Laboratory. NPO-48099

This Brief includes a Technical Support Package (TSP).

In Situ Potassium-Argon Geochronology Using Fluxed Fusion and a Double Spike (reference NPO-48099) is currently available for download from the TSP library.

Please Login at the top of the page to download.


White Papers

How to Turn Your Engineers Into Product Design Superheroes
Sponsored by arena solutions
Windows CE Development for RISC Computers Made Easy
Sponsored by Sealevel
Made in Space: 3D Printing in Zero-G
Sponsored by stratasys
Microelectronics Package for Extreme Environments
Sponsored by msk products
Determining an Effective Analog Sampling Rate
Sponsored by Sealevel
Rapid PCR Instrument Development
Sponsored by kmc systems

White Papers Sponsored By: