This detector has applications in spectroscopy of chemical species in atmospheres of planets, for detection of biochemical warfare agents, and terahertz imaging for port security.

High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products.

Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. The latter two are the most sensitive and require very small LO power to be driven to the desired operating point. These mixers require deep cryogenic cooling to at least 4 K. Schottky mixers are less sensitive and require stronger LO sources. However, they can be used at any ambient temperature.

A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft. It requires small LO power (1–10 microwatt) and, therefore, can be driven by the existing LOs, even above 1 THz.

The mixer device is a micron-sized patch of the 2DEG formed in the AlInN/GaN heterostructure grown on sapphire substrate. The device operates as a bolometer with a temperaturedependent resistance (mobility of the 2DEG). Free electrons in the device absorb THz radiation received by a micro-antenna coupled to the mixer device. This changes the temperature of electrons and the bolometer resistance. The maximum speed of the mixer device of this type is set by the combination of the electron-phonon relaxation in the material and the diffusion of hot electrons through the device ends, and corresponds to several GHz. This is what is usually required for the intermediate frequency (IF) bandwidth of a typical THz mixer. One can say that this 2DEG HEB mixer combines the best qualities of the superconducting HEB mixer (low LO power, low noise) and of the Schottkydiode mixer (ambient temperature operation).

The main innovation here is the use of GaN-based heterostructures. Com - pared to the much better known GaAsbased heterostructures, the new material system provides nearly ideal conditions for strong Drude absorption of radiation by electrons. This allows for the very short momentum relaxation time (time between collisions) of electrons. Since this time is shorter than a period of the THz field oscillation, the electrons absorb THz radiation well. In the GaAs structures, the momentum relaxation time is usually much longer, so the electrons move in the field without collisions for a long time. This reduces their ability to absorb radiation and makes the mixer device much less sensitive.

This work was done by Boris S. Karasik, John J. Gill, Imran Mehdi, and Timothy J. Crawford of Caltech, and Andrei V. Sergeev and Vladimir V. Mitin of SUNY Buffalo for NASA’s Jet Propulsion Laboratory. NPO-47796

This Brief includes a Technical Support Package (TSP).

Terahertz Radiation Heterodyne Detector Using Two- Dimensional Electron Gas in a GaN Heterostructure (reference NPO-47796) is currently available for download from the TSP library.

Please Login at the top of the page to download.

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.