Special Coverage

Home

Woven Thermal Protection System

Ames Research Center, Moffett Field, California Woven thermal protection system (WTPS) is a new approach to producing TPS materials that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low lifecycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance by varying material composition and properties via the controlled placement of fibers within a woven structure. The resulting material can be designed to perform optimally for a wide range of entry conditions.

Posted in: Briefs

Read More >>

Innovative, Low-CTE, Lightweight Structures with Higher Strength

These composites feature controllable properties and strength. Goddard Space Flight Center, Greenbelt, Maryland A series of lightweight (density below 2.0 gm/cm3) composites has been manufactured that have controllable properties. The core composite has been improved to provide higher strength (similar to aluminum), extremely low density, receptivity to exterior coatings, and highly designable properties. The composite is made in days, is machinable and formable, can be joined/threaded, can be exposed to various environments (temperature, radiation), and is easily made into many parts. Lightweight mirrors for space and IR applications are extremely important. The goal of this work was to create lightweight multifunctional composites for replacement of titanium, beryllium, Invar, aluminum, rubber, and graphite epoxy for structural, mirror, and non-structural components. The key characteristics of this tailorable composite are low density, high stiffness (up to 25 MSI modulus), variable/low coefficient of thermal expansion (CTE) (2 to 7 ppm/°C), high temperature refractory materials and variable thermal conductivity. The composites are easily made (time to completion of 7 to 10 days), joinable, threadable, machinable to 80 mils, durable to resist FOD (foreign object damage), ductile enough to behave like a metal, and relatively low in cost.

Posted in: Briefs, TSP, Coatings & Adhesives, Composites

Read More >>

Negative Dielectric Constant Material Based on Ion-Conducting Materials

Langley Research Center, Hampton, Virginia Metamaterials, or artificial negative index materials (NIMs), have generated great attention due to their unique and exotic electromagnetic properties. A negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI).

Posted in: Briefs, TSP, Energy Storage, Sensors

Read More >>

Insulating Materials and Precursor Formulations, and Method of Forming

Marshall Space Flight Center, Alabama Methods were developed for forming an insulating material that combines a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or a matrix comprising one of a reaction product of a polysilazane and an isocyanate, and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from a reaction of the polysilazane and the epoxy resin.

Posted in: Briefs

Read More >>

Selective Clay Placement Within a Silicate Clay-Epoxy-Blend Nanocomposite

The resulting toughened epoxies and composites are used for commercial and military aircraft, and marine applications. John H. Glenn Research Center, Cleveland, Ohio The dispersion of a layered silicate into an epoxy matrix often increases the material strength and stiffness, but reduces resin toughness. This innovation is a method to selectively place organically modified clay within specific regions of an epoxy blend, where the clay provides maximum benefit to the material performance. By this process, the material yield stress was observed to increase by 40 to 100%, depending on the blend composition. The toughness of the material, as defined by the area under the stress-strain curve, was observed to increase or remain unchanged.

Posted in: Briefs, Composites

Read More >>

Evaluation of Rail Gun Technology for Launch Assist of Air-Breathing Rockets

John F. Kennedy Space Center, Florida A prototype horizontal electromagnetic rail launcher has been demonstrated along with a corresponding theory. This system builds out of published work in augmented rail guns, but modifies this technology so that the motor can operate for seconds rather than milliseconds, and provide low acceleration (such as might be needed to launch an aircraft) rather than the extreme accelerations seen in the guns. The final system operates off of relatively low voltages (tens of volts), but with substantial currents. A lab bench prototype has been constructed and operated, demonstrating 13 Gs acceleration of a small 230-gram sled.

Posted in: Briefs, Motors & Drives

Read More >>

Using Harmonics to Control Flutter in Wings with Electrical Motors

This control system concept applies principles of forced aeroelasticity to distributed electric propulsion systems. Armstrong Flight Research Center, Edwards, California As aeronautics engineers develop innovative distributed electric propulsion systems, they face new challenges in ensuring that these innovative aircraft are safe as well as fuel efficient. In particular, these systems involve a large number of electrically driven fan motors mounted across a wing that induce vibrations that negatively affect the aircraft’s stability. These vibrations cause problems regardless of whether the motors are bottom-mounted, top-mounted, or wing-embedded.

Posted in: Briefs, Motors & Drives

Read More >>

White Papers

Recruit Or Retain Report
Sponsored by Aerotek
Automated Inspection Lowers Solar Cell Costs
Sponsored by Teledyne DALSA
Antenna Basics
Sponsored by Rohde and Schwarz
IEC 61131-3 Now in Motion
Sponsored by Trio Motion
How Paper-based 3D Printing Works: The Technology and Advantages
Sponsored by Mcor Technologies
Force and Torque Measurement Traceability
Sponsored by Morehouse

White Papers Sponsored By: