Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Home

Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

Such sheets are components for high-speed digital and RF electronics for defense and commercial communications. This innovation consists of a set of methodologies for preparing large area (>1 cm2) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Fabrication, Graphite, Nanotechnology

Read More >>

Heat Transfer Analysis for Optimizing Solar Cell Casting Equipment

Finite element analysis was used to develop a miniature furnace to cast the solar cell wafers. Solar Power Industries’ (SPI) current annual production capacity for processing polycrystalline silicon feedstock into completed solar cells has grown to 40 megawatts, with plans to increase capacity to 250 megawatts over the next several years. SPI’s solar cell manufacturing process consists of three main steps:   Ingot and Wafer Production—High-quality silicon feedstock (containing specific quantities of dopants such as boron in order to alter electrical properties) is melted and solidified inside a directional solidification furnace to cast polycrystalline silicon ingots. The ingots are cut into rectangular blocks with a square cross-section, and then the blocks are sawed into thin multicrystalline wafers. Cell Production — The wafers are etched to remove surface damage caused by sawing. The wafers are then processed in a series of steps to produce photovoltaic cells. Module Assembly — Individual cells are connected by soldering to flat wires. Strings of cells are then joined to parallel connector wires and laminated to produce a solar module.

Posted in: Briefs, Manufacturing & Prototyping, Solar energy, Heat transfer, Suppliers, Casting, Production

Read More >>

Support for Diagnosis of Custom Computer Hardware

The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units.

Posted in: Briefs, Electronics & Computers, Computer software and hardware, Diagnostics, Test procedures

Read More >>

Providing Goal-Based Autonomy for Commanding a Spacecraft

A computer program for use aboard a scientific- exploration spacecraft autonomously selects among goals specified in high-level requests and generates corresponding sequences of low-level commands, understandable by spacecraft systems. (As used here, “goals” signifies specific scientific observations.) From a dynamic, onboard set of goals that could oversubscribe spacecraft resources, the program selects a non-oversubscribing subset that maximizes a quality metric. In an early version of the program, the requested goals are assumed to have fixed starting times and durations. Goals can conflict by exceeding a limit on either the number of separate goals or the number of overlapping goals making demands on the same resource.

Posted in: Briefs, TSP, Information Sciences, Automatic pilots, Computer software and hardware, Spacecraft guidance, Logistics

Read More >>

Dynamic Method For Identifying Collected Sample Mass

G-Sample is designed for sample collection missions to identify the presence and quantity of sample material gathered by spacecraft equipped with end effectors. The software method uses a maximum-likelihood estimator to identify the collected sample’s mass based on onboard force-sensor measurements, thruster firings, and a dynamics model of the spacecraft. This makes sample mass identification a computation rather than a process requiring additional hardware.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Computer software and hardware, Test equipment and instrumentation, Spacecraft, Vehicle dynamics

Read More >>

Optimal Planning and Problem-Solving

CTAEMS MDP Optimal Planner is a problem- solving software designed to command a single spacecraft/rover, or a team of spacecraft/ rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing.

Posted in: Briefs, TSP, Information Sciences, Computer software and hardware, Spacecraft guidance, Logistics, Manufacturing processes, Materials handling

Read More >>

Attitude-Control Algorithm for Minimizing Maneuver Execution Errors

A G-RAC attitude- control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque.

Posted in: Briefs, Information Sciences, Mathematical models, Attitude control, Booster rocket engines, Spacecraft

Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.