Special Coverage

Home

A History of High-Performance Computing

Faster than most speedy computers. More powerful than its NASA data-processing predecessors. Able to leap large, mission-related computational problems in a single bound. Clearly, it’s neither a bird nor a plane, nor does it need to don a red cape, because it’s super in its own way. It’s Columbia, NASA’s newest supercomputer and one of the world’s most powerful production/processing units.

Posted in:

Read More >>

GPS Eye-in-the-Sky Software Takes Closer Look Below

The Global Positioning System (GPS) is a satellite navigation system developed and maintained by the U.S. Government. Though initially designed for military applications, GPS is also a public information service that protects the environment, improves productivity, and increases safety. It can be used as an instrument to map and survey boundaries; improve crop production; track storms and the spread of wildfires; and monitor any land movement and deformation of the Earth’s crust resulting from earthquake activity. It also offers navigational assistance for cars, airplanes, and boats. For example, cars equipped with GPS-based navigational systems can direct drivers to their intended destination points, steering them away from longer routes, traffic, and road construction, and preventing them from getting lost.

Posted in:

Read More >>

Difficult Decisions Made Easier

NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems.

Posted in:

Read More >>

Difficult Decisions Made Easier

NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems.

Posted in:

Read More >>

Extension of Liouville Formalism to Postinstability Dynamics

A fictitious stabilizing force is introduced. A mathematical formalism has been developed for predicting the postinstability motions of a dynamic system governed by a system of nonlinear equations and subject to initial conditions. Previously, there was no general method for prediction and mathematical modeling of postinstability behaviors (e.g., chaos and turbulence) in such a system.

Posted in: Briefs, TSP

Read More >>

Device for Automated Cutting and Transfer of Plant Shoots

This device is simple yet effective. A device that enables the automated cutting and transfer of plant shoots is undergoing development for use in the propagation of plants in a nursery or laboratory. At present, it is standard practice for a human technician to use a knife and forceps to cut, separate, and grasp a plant shoot. The great advantage offered by the present device is that its design and operation are simpler than would be those of a device based on the manual cutting/separation/grasping procedure. [The present device should not be confused with a prior device developed for partly the same purpose and described in "Compliant Gripper for a Robotic Manipulator" (NPO-21104), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 59.]

Posted in: Briefs, TSP

Read More >>

Neutral-Axis Springs for Thin-Wall Integral Boom Hinges

A document proposes the use of neutral-axis springs to augment the unfolding torques of hinges that are integral parts of thin-wall composite-material booms used to deploy scientific instruments from spacecraft. A spring according to the proposal would most likely be made of metal and could be either flat or curved in the manner of a measuring tape. Under the unfolded, straight-boom condition, each spring would lie along the neutral axis of a boom. The spring would be connected to the boom by two supports at fixed locations on the boom. The spring would be fixed to one of the supports and would be free to slide through the other support. The width, thickness, and material of the spring would be chosen to tailor the spring stiffness to provide the desired torque margin to assist in deployment of the boom. The spring would also contribute to the stiffness of the boom against bending and torsion, and could contribute some damping that would help suppress unwanted vibrations caused by the deployment process or by external disturbances.

Posted in: Briefs, TSP

Read More >>