Special Coverage

Home

Assessment of Models of Chemically Reacting Granular Flows

A report presents an assessment of a general mathematical model of dense, chemically reacting granular flows like those in fluidized beds used to pyrolize biomass. The model incorporates submodels that have been described in several NASA Tech Briefs articles, including "Generalized Mathematical Model of Pyrolysis of Biomass" (NPO-20068) NASA Tech Briefs, Vol. 22, No. 2 (February 1998), page 60; "Model of Pyrolysis of Biomass in a Fluidized-Bed Reactor" (NPO-20708), NASA Tech Briefs, Vol. 25, No. 6 (June 2001), page 59; and "Model of Fluidized Bed Containing Reacting Solids and Gases" (NPO-30163), which appears elsewhere in this issue. The model was used to perform computational simulations in a test case of pyrolysis in a reactor containing sand and biomass (i.e., plant material) particles through which passes a flow of hot nitrogen. The boundary conditions and other parameters were selected for the test case to enable assessment of the validity of some assumptions incorporated into submodels of granular stresses, granular thermal conductivity, and heating of particles. The results of the simulation are interpreted as partly affirming the assumptions in some respects and indicating the need for refinements of the assumptions and the affected submodels in other respects.

Posted in: Briefs, TSP

Read More >>

Sea-Creature Sensors



Posted in: Blog

Read More >>

Throttling Cryogen Boiloff To Control Cryostat Temperature

Consumption of liquid cryogen and electrical energy could be reduced. An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

Posted in: Briefs, TSP

Read More >>

Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species- specific aspects of turbulence. The simulations were performed for two different fluid pairs — O2/H2 and C7H16/N2 — at similar reduced initial pressures (reduced pressure is defined as pressure ÷ critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

Posted in: Briefs, TSP

Read More >>

NASA Spinoff Keeps Drivers “Ice Free”

In the late 1990s, NASA Ames Research Center in California invented an anti-icing fluid that kept ice from building up on airplane wings. The fluid, when applied to a dry surface, prevented the ice from even forming a surface bond; if applied before ice formed, it served as a deicer. The formula contains propylene glycol, which has a very low freezing point, and a thickener that helps it adhere to the surface. Ice gathers on top of the surface, and can be wiped off with little effort.

Posted in: UpFront

Read More >>

Floating Probe Assembly for Measuring Temperature of Water

Temperatures are measured at several depths. A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. These types of measurements are used in computer models to relate remotely sensed water-surface temperature to bulk- water temperature. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured.

Posted in: Briefs, TSP

Read More >>

Proton Collimators for Fusion Reactors

High-energy protons would be channeled into useful beams. Proton collimators have been proposed for incorporation into inertial- electrostatic- confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications. An artist's concept for an IEC powered spaceship designed for round trip missions to Mars and Jupiter is shown in the figure.

Posted in: Briefs, TSP

Read More >>