Special Coverage

Home

Improved Compression of Wavelet-Transformed Images

Code parameters are selected adaptively to achieve high compression performance. A recently developed data-compression method is an adaptive technique for coding quantized wavelet-transformed data, nominally as part of a complete image-data compressor. Unlike some other approaches, this method admits a simple implementation and does not rely on the use of large code tables.

Posted in: Information Sciences, Briefs

Read More >>

Predicting Numbers of Problems in Development of Software

A method has been formulated to enable prediction of the amount of work that remains to be performed in developing flight software for a spacecraft. The basic concept embodied in the method is that of using an idealized curve (specifically, the Weibull function) to interpolate from (1) the numbers of problems discovered thus far to (2) a goal of discovering no new problems after launch (or six months into the future for software already in use in orbit). The steps of the method can be summarized as follows:

Posted in: Information Sciences, Briefs

Read More >>

Computationally Lightweight Air-Traffic-Control Simulation

This algorithm simulates ATC functions for a busy airport.An algorithm for computationally lightweight simulation of automated airtraffic control (ATC) at a busy airport has been derived. The algorithm is expected to serve as the basis for development of software that would be incorporated into flight-simulator software, the ATC component of which is not yet capable of handling realistic airport loads. Software based on this algorithm could also be incorporated into other computer programs that simulate a variety of scenarios for purposes of training or amusement.

Posted in: Information Sciences, Briefs

Read More >>

Generating Solid Models From

Topographical Data Topographical data are converted into forms useable by rapid-prototyping machines.A method of generating solid models of terrain involves the conversion of topographical data into a form useable by a rapid-prototyping (RP) machine. The method was developed to enable the use of the RP machine to make solid models of Martian terrain from Mars Orbiter laser-altimeter topographical data. The method is equally applicable to the generation of models of the terrains of other astronomical bodies, including other planets, asteroids, and Earth.

Posted in: Information Sciences, Briefs

Read More >>

Stability-Augmentation Devices for Miniature Aircraft

Passive mechanical devices help miniature aircraft fly in adverse weather. Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft.

Posted in: Mechanical Components, Briefs

Read More >>

Tool Measures Depths of Defects on a Case Tang Joint

Precise measurements can be made consistently. A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a “capture feature tang,” located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.

Posted in: Mechanical Components, Briefs

Read More >>

Lifting Mechanism for the Mars Explorer Rover

A report discusses the design of a rover lift mechanism (RLM) — a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

Posted in: Mechanical Components, Briefs

Read More >>