Special Coverage

Home

Making AlNx Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam

Ion-beam parameters can be controlled to optimize properties of AlNx layers. A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlNx) for use as tunnel barriers in Nb/Al-AlNx/Nb superconductor/ insulator/ superconductor (SIS) Josephson junctions. AlNx is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Stripline/Microstrip Transition in Multilayer Circuit Board

Transitions like this one could be useful in microwave communication products. A stripline to microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz).

Posted in: Semiconductors & ICs, Briefs

Read More >>

Mathematical Modeling of a Copper-Deposition System for Integrated Circuits

A unique process for making flip-chip IC receptacles required optimization through modeling. Advanced packaging techniques are the key to utilizing state-of-the-art microelectronic devices. The flip-chip method has become a cost-effective means of erasing many packaging and thermal issues that could spell disaster for high-density, high-power integrated circuits (ICs). Making flip-chip receptacles presents significant engineering challenges. To overcome those challenges, Replisaurus developed a unique process that required mathematical modeling to better understand and optimize the patented process.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Multifunctional Logic Gate Controlled by Temperature

This circuit performs different logic functions at different temperatures. The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that has been designed to function as a NAND gate at a temperature between 0 and 80 °C and as a NOR gate at temperatures from 120 to 200 °C. In the intermediate temperature range of 80 to 120 °C, this circuit is expected to perform a function intermediate between NAND and NOR with degraded noise margin. The process of designing the circuit and the planned fabrication and testing of the circuit are parts of demonstration of polymorphic electronics — a technological discipline that emphasizes designing the same circuit to perform different analog and/or digital functions under different conditions. In this case, the different conditions are different temperatures.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Multifunctional Logic Gate Controlled by Supply Voltage

This circuit performs different logic functions at different levels of supply voltage. The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that functions as a NAND gate at a power-supply potential (Vdd) of 3.3 V and as NOR gate for Vdd = 1.8 V. In the intermediate Vdd range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics — a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of Vdd.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Patched Off-Axis Bending/Twisting Actuators for Thin Mirrors

Two documents present updates on thin-shell, adjustable, curved mirrors now being developed for use in spaceborne imaging systems.  These mirrors at an earlier stage of development were reported in “Nanolaminate Mirrors With Integral Figure-Control Actuators” (NPO-30221), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 80. To recapitulate: These mirrors comprise metallic film reflectors on nanolaminate substrates that contain “in-plane” actuators for controlling surface figures with micronlevel precision. The actuators are integral parts of the mirror structures, typically fabricated as patches that are bonded onto the rear (nonreflective) surfaces of the mirror shells. The current documents discuss mathematical modeling of mirror deflections caused by actuators arranged in unit cells distributed across the rear mirror surfaces. One of the documents emphasizes an actuator configuration in which a mirror surface is divided into hexagonal unit cells. Each unit cell contains four rectangular actuator patches in an off-axis cruciform pattern to induce a combination of bending and twisting. For deflections to reduce certain optical aberrations, it is found that, relative to other configurations, this configuration involves a smaller areal density of actuators.

Posted in: Materials, Briefs

Read More >>

Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

Capacity densities exceed those of materials now commercially available for the same purpose. Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithiumion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

Posted in: Materials, Briefs

Read More >>