Special Coverage

Home

Multifunctional Logic Gate Controlled by Temperature

This circuit performs different logic functions at different temperatures. The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that has been designed to function as a NAND gate at a temperature between 0 and 80 °C and as a NOR gate at temperatures from 120 to 200 °C. In the intermediate temperature range of 80 to 120 °C, this circuit is expected to perform a function intermediate between NAND and NOR with degraded noise margin. The process of designing the circuit and the planned fabrication and testing of the circuit are parts of demonstration of polymorphic electronics — a technological discipline that emphasizes designing the same circuit to perform different analog and/or digital functions under different conditions. In this case, the different conditions are different temperatures.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Multifunctional Logic Gate Controlled by Supply Voltage

This circuit performs different logic functions at different levels of supply voltage. The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that functions as a NAND gate at a power-supply potential (Vdd) of 3.3 V and as NOR gate for Vdd = 1.8 V. In the intermediate Vdd range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics — a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of Vdd.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Patched Off-Axis Bending/Twisting Actuators for Thin Mirrors

Two documents present updates on thin-shell, adjustable, curved mirrors now being developed for use in spaceborne imaging systems.  These mirrors at an earlier stage of development were reported in “Nanolaminate Mirrors With Integral Figure-Control Actuators” (NPO-30221), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 80. To recapitulate: These mirrors comprise metallic film reflectors on nanolaminate substrates that contain “in-plane” actuators for controlling surface figures with micronlevel precision. The actuators are integral parts of the mirror structures, typically fabricated as patches that are bonded onto the rear (nonreflective) surfaces of the mirror shells. The current documents discuss mathematical modeling of mirror deflections caused by actuators arranged in unit cells distributed across the rear mirror surfaces. One of the documents emphasizes an actuator configuration in which a mirror surface is divided into hexagonal unit cells. Each unit cell contains four rectangular actuator patches in an off-axis cruciform pattern to induce a combination of bending and twisting. For deflections to reduce certain optical aberrations, it is found that, relative to other configurations, this configuration involves a smaller areal density of actuators.

Posted in: Materials, Briefs

Read More >>

Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

Capacity densities exceed those of materials now commercially available for the same purpose. Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithiumion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

Posted in: Materials, Briefs

Read More >>

Isogrid Membranes for Precise, Singly Curved Reflectors

Reinforcing meshes of fibers would prevent wrinkles and ripples. A new type of composite material has been proposed for membranes that would constitute the reflective surfaces of planned lightweight, single curvature (e.g., parabolic cylindrical) reflectors for some radar and radio communication systems. The proposed composite materials would consist of polyimide membranes containing embedded grids of high strength (e.g., carbon) fibers. The purpose of the fiber reinforcements, as explained in more detail below, is to prevent wrinkling or rippling of the membrane.

Posted in: Materials, Briefs

Read More >>

Photocatalytic Coats in Glass Drinking-Water Bottles

According to a proposal, the insides of glass bottles used to store drinking water would be coated with films consisting of or containing TiO2. In the presence of ultraviolet light, these films would help to remove bacteria, viruses, and trace organic contaminants from the water.

Posted in: Materials, Briefs

Read More >>

How Much Financing Does Your Growing Company Need?

How much money will your growing company need? The answer is, you want enough investment to grow the company to its potential, yet do not want to over-fund, giving up too much equity. You cannot raise funds without a reasonable estimate of what you need.

Posted in: Articles

Read More >>