Special Coverage

Home

Plumbing Fixture for a Microfluidic Cartridge

A fixture has been devised for making the plumbing connections between a microfluidic device in a replaceable cartridge and an external fluidic system. The fixture includes a 0.25-in. (6.35-mm) thick steel plate, to which the cartridge is fastened by two 10-32 thumb screws. The plate holds one plumbing fitting for the inlet and one for the outlet of the microfluidic device. Each fitting includes a fused-silica tube of 0.006-in. (≈0.15-mm) inside diameter within a fluorinated ethylene-propylene (FEP) tube of 0.0155-in. (≈0.39-mm) inside diameter and 0.062-in. (≈1.57-mm) outside diameter. The FEP tube is press-fit through the steel plate so that its exposed end is flush with the surface of the plate, and the silica tube protrudes 0.03 in. (≈0.76 mm) from the plate/FEPtube- end surface. The cartridge includes a glass cover plate that contains 0.06-mm-wide access ports. When the cartridge is fastened to the steel plate, the silica tubes become inserted through the access ports and into the body of the cartridge, while the ends of the FEP tubes become butted against the glass cover plate. An extremely tight seal is thereby made.

Posted in: Briefs

Read More >>

Ground-Based Correction of Remote-Sensing Spectral Imagery

Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN™, that has been developed through several versions up to what are now known as MODTRAN4™ and MODTRAN5™. These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4™. Software tools for handling general data formats, performing a Langleytype calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric- correction computer program known as “FLAASH” have also been incorporated into the present software. Concomitantly with the software described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

Posted in: Briefs

Read More >>

Electromechanically Actuated Valve for Controlling Flow Rate

A ball screw would be both an actuator and a flow-control component. A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow.

Posted in: Briefs, TSP

Read More >>

Magnet-Based System for Docking of Miniature Spacecraft

The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube. A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet.

Posted in: Mechanics, Briefs

Read More >>

Low-Friction, High-Stiffness Joint for Uniaxial Load Cell

Friction and hysteresis are minimized. A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements.

Posted in: Briefs

Read More >>

Fusion Research



Posted in: Blog

Read More >>

Technologies of the Week

A disclosed technology allows a factory-installed seatbelt to be tightened from gentle to extreme. The seatbelt works like an aircraft seat belt: when tightened, it stays tight.View this technology here. A technology has been made available improving how safely children are strapped in their safety seats. View this technology here.

Posted in: Blog

Read More >>