Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Home

Making Complex Electrically Conductive Patterns on Cloth

Circuit patterns are implemented in tightly woven cloth instead of stitched conductive thread. A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as “e-textiles,” in which electrically conductive patterns are formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Automation, Fabrication, Conductivity, Fabrics

Read More >>

2007 Product of the Year and Design Contest Winners Honored

The 2007 NASA Tech Briefs (NTB) and Photonics Tech Briefs (PTB) Readers’ Choice Product of the Year Awards were presented recently by the editors of NTB and PTB at an awards dinner in New York City. The event honored the top three products of 2007 as chosen by each magazine’s readers. Also honored at the event were the winners of the sixth annual Create the Future Design Contest, presented by SolidWorks Corp.

Posted in: Articles, Manufacturing & Prototyping, Design processes

Read More >>

Special Polymer/Carbon Composite Films for Detecting SO₂

These films offer distinct advantages over prior SO2-sensor materials.A family of polymer/ carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures >100 °C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical operating temperatures between 28 and 32 °C and can be regenerated at temperatures between 36 and 40 °C.

Posted in: Briefs, TSP, Materials

Read More >>

Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20–50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired.

Posted in: Briefs, Materials

Read More >>

Composite Cathodes for Dual-Rate Li-Ion Batteries

A battery could have both high charge capacity and high rate capacity. Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions.

Posted in: Briefs, TSP, Materials

Read More >>

Nickel-Based Superalloy Resists Embrittlement by Hydrogen

This alloy also exhibits high strength and ductility. A nickel-based superalloy that resists embrittlement by hydrogen more strongly than does nickel alloy 718 has been developed. Nickel alloy 718 is the most widely used superalloy. It has excellent strength and resistance to corrosion as well as acceptably high ductility, and is recognized as the best alloy for many high- temperature applications. However, nickel alloy 718 is susceptible to embrittlement by hydrogen and to delayed failure and reduced tensile properties in gaseous hydrogen. The greater resistance of the present nickel- based superalloy to adverse effects of hydrogen makes this alloy a superior alternative to nickel alloy 718 for applications that involve production, transfer, and storage of hydrogen, thereby potentially contributing to the commercial viability of hydrogen as a clean-burning fuel.

Posted in: Briefs, Materials, Hydrogen storage, Product development, Metallurgy, Nickel alloys

Read More >>

Chemical Passivation of Li⁺-Conducting Solid Electrolytes

Such passivation could enable long-life lithium rechargeable cells.Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities.

Posted in: Briefs, TSP, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.