Special Coverage

Home

Single-Chip T/R Module for 1.2 GHz

T/R modules can be made smaller and at lower cost. A single-chip CMOS-based (complementary- metal-oxide-semi- conductor- based) transmit/receive (T/R) module is being developed for L-band radar systems. Previous T/R module implementations required multiple chips employing different technologies (GaAs, Si, and others) combined with off-chip transmission lines and discrete components including circulators. The new design eliminates the bulky circulator, significantly reducing the size and mass of the T/R module. Compared to multi-chip designs, the single- chip CMOS can be implemented with lower cost. These innovations enable cost-effective realization of advanced phased array and synthetic aperture radar systems that require integration of thousands of T/R modules.

Posted in: Briefs, TSP

Read More >>

Waveguide Power-Amplifier Module for 80 to 150 GHz

The amplifier can now be connected to other equipment more easily. A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR-8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) Because the amplifier in its unpackaged form was a single, fragile InP chip, it was necessary to use special probes to make electrical connections between the amplifier and test equipment in order to measure the power gain and other aspects of amplifier performance. In contrast, the waveguide poweramplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation. The amplifier in its unpackaged form was reported in “Power Amplifier With 9 to 13 dB of Gain from 65 to 146 GHz” (NPO-20880), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 44.

Posted in: Briefs, TSP

Read More >>

Cooking Dinner at Home From the Office

It is well past quitting time, but you are still stuck in the office. Your spouse left work over an hour ago, but is caught in bumper-to-bumper traffic. As a result, neither of you were available to pick up your daughter on time from her soccer game. If your son hadn't gotten detention at school today which also made him late for work he could have picked her up.

Posted in:

Read More >>

Space Suit Spins

Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens.

Posted in:

Read More >>

Automated Solvent Seaming of Large Polyimide Membranes

Success depends on precise control of all relevant process details. A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical - quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide - aperture membrane optics, with areal densities densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications.

Posted in: Briefs

Read More >>

Manufacturing Precise, Lightweight Paraboloidal Mirrors

Success depends on the proper selection of materials and process conditions. A process for fabricating a precise, diffraction- limited, ultralightweight, composite-material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production.

Posted in: Briefs, TSP

Read More >>

Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

Strength, ductility, and resistance to stress corrosion cracking are increased. A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility.

Posted in: Briefs

Read More >>