Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection

Genetic Algorithm Optimizes Q-LAW Control Parameters

A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto- optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution.

Posted in: Briefs, TSP, Information Sciences, Trajectory control, Mathematical models, Optimization, Propellants, Spacecraft fuel


Quantum-Inspired Maximizer

A report discusses an algorithm for a new kind of dynamics based on a quantum-classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen “computational” potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear.

Posted in: Briefs, TSP, Information Sciences


Vision, Software Enhancements Advance Robots

Robotics technology has made measurable strides in the last few years. Today’s robots can move with greater precision over a more flexible range of motion, while handling heavier payloads. Advances in vision systems and software are giving robots the ability to recognize and handle a wider range of parts than before, and make decisions that only humans could previously perform.

Posted in: Articles, Motion Control, Computer software and hardware, Imaging and visualization, Performance upgrades, Robotics


Understanding Robot Movements Through Kinematics

Many robotic and mechanical systems require the calculation of kinematic equations to express the relationship between variables that are to be controlled (motor/actuator position obtained via feedback sensors and manipulated by motors/actuators) and variables that are to be commanded, such as the position of a tool tip or objective.

Posted in: Articles, Motion Control


Matrox Helps Military Vehicles Get the Robotic Touch

To camouflage an object is to hide it, conceal it so that it blends in with the surrounding environment. For the military, it’s a tactical necessity and can make the difference between a platoon’s success or failure, a soldier’s life or death. It’s no wonder that the military takes camouflage very seriously. Especially for vehicles.

Posted in: Application Briefs, Robotics


FARO Inspection Device Aids in Robot Calibration

Parallel Robotic Systems Company (Hampton, NH) designs and produces high-precision positioning systems to provide effective solutions for difficult motion problems, correct errors in automated welding lines, develop newer and better product designs, and further testing in bio-mechanical research.

Posted in: Application Briefs, Robotics


Linear Bushings

MISUMI USA Inc. (Schaumburg, IL) has introduced a family of self-lubricating linear bushings in assorted styles, with straight or mini-flanged versions. The bushings carry three times the rated life span of conventional bushings.

Posted in: Products


White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.