Special Coverage

Home

Dynamically Alterable Arrays of Polymorphic Data Types

An application library package was developed that represents data packets for Deep Space Network (DSN) message packets as dynamically alterable arrays composed of arbitrary polymorphic data types. The software was to address a limitation of the present state of the practice for having an array directly composed of a single monomorphic data type. This is a severe limitation when one is dealing with science data in that the types of objects one is dealing with are typically not known in advance and, therefore, are dynamic in nature. The unique feature of this approach is that it enables one to define at run-time the dynamic shape of the matrix with the ability to store polymorphic data types in each of its indices. Existing languages such as C and C++ have the restriction that the shape of the array must be known in advance and each of its elements be a monomorphic data type that is strictly defined at compile-time. This program can be executed on a variety of platforms. It can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware.

Posted in: Briefs, TSP

Read More >>

Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs

Maximum water levels are mapped for Hurricanes Camille and Katrina. Increasing the accuracy of storm-surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm-surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm-surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and, most importantly, maximum wind speed.

Posted in: Briefs

Read More >>

Representation of Serendipitous Scientific Data

A computer program defines and implements an innovative kind of data structure than can be used for representing information derived from serendipitous discoveries made via collection of scientific data on long exploratory spacecraft missions. Data structures capable of collecting any kind of data can easily be implemented in advance, but the task of designing a fixed and efficient data structure suitable for processing raw data into useful information and taking advantage of serendipitous scientific discovery is becoming increasingly difficult as missions go deeper into space. The present software eases the task by enabling definition of arbitrarily complex data structures that can adapt at run time as raw data are transformed into other types of information. This software runs on a variety of computers, and can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware. It has no specific memory requirements and depends upon the other software with which it is used. This program is implemented as a library that is called by, and becomes folded into, the other software with which it is used.

Posted in: Briefs, TSP

Read More >>

Look Sharp While Seeing Sharp

While fashion styles are known to come and go, a certain 'shade' from the past has proved otherwise.

Posted in:

Read More >>

Microspheres in Plasma Display Panels

NASA does things that have never been done before—sending spacecraft to other planets, sending people to the Moon, and exploring the limits of the universe. To accomplish these scientific missions, engineers at work within the Space Agency build machines and equipment that have never been made before—rockets that can send advanced instruments across the solar system, giant telescopes that watch the stars from space, and spacecraft that can keep astronauts safe from the perils of space flight. To do these never-before-done deeds with these never-before-made materials, NASA often needs to start at the basics and create its own textiles and materials. The engineers and materials specialists at the Space Agency are, therefore, among the best in the world.

Posted in:

Read More >>

Inferring Gear Damage From Oil-Debris and Vibration Data

Data fusion increases the reliability and reduces the difficulty of gear-damage diagnosis. system for real-time detection of surface- fatigue-pitting damage to gears for use in a helicopter transmission is based on fuzzy-logic used to fuse data from sensors that measure oil-borne debris, referred to as “oil debris” in the article, and vibration signatures. A system to detect helicopter-transmission gear damage is beneficial because the power train of a helicopter is essential for propulsion, lift, and maneuvering, hence, the integrity of the transmission is critical to helicopter safety. To enable detection of an impending transmission failure, an ideal diagnostic system should provide real-time monitoring of the “health” of the transmission, be capable of a high level of reliable detection (with minimization of false alarms), and provide human users with clear information on the health of the system without making it necessary for them to interpret large amounts of sensor data.

Posted in: Briefs, TSP

Read More >>

User Interactive Software for Analysis of Human Physiological Data

Ambulatory physiological monitoring has been used to study human health and performance in space and in a variety of Earth-based environments (e.g., military aircraft, armored vehicles, small groups in isolation, and patients). Large, multi-channel data files are typically recorded in these environments, and these files often require the removal of contaminated data prior to processing and analyses.

Posted in: Briefs, TSP

Read More >>