Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Home

Low-Impact Mating System for Docking Spacecraft

A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Adaptive control, Architecture, Connectors and terminals, Spacecraft

Read More >>

Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes.

Posted in: Briefs, TSP, Physical Sciences, Spectroscopy, Composite materials, Resins, Non-destructive tests, Test procedures

Read More >>

Gold-on-Polymer-Based Sensing Films for Detection of Organic and Inorganic Analytes in the Air

A document discusses gold-on-polymer as one of the novel sensor types developed for part of the sensor development task. Standard polymer- carbon composite sensors used in the JPL Electronic Nose (ENose) have been modified by evaporating 15 nm of metallic gold on the surface. These sensors have been shown to respond to alcohols, aromatics, ammonia, sulfur dioxide, and elemental mercury in the parts-per-million and parts-per-billion concentration ranges in humidified air.

Posted in: Briefs, TSP, Physical Sciences, Sensors and actuators, Air pollution, Chemicals, Composite materials, Polymers

Read More >>

Genetic Algorithm Optimizes Q-LAW Control Parameters

A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto- optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution.

Posted in: Briefs, TSP, Information Sciences, Trajectory control, Mathematical models, Optimization, Propellants, Spacecraft fuel

Read More >>

Quantum-Inspired Maximizer

A report discusses an algorithm for a new kind of dynamics based on a quantum-classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen “computational” potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear.

Posted in: Briefs, TSP, Information Sciences, Mathematical models, Statistical analysis

Read More >>

Vision, Software Enhancements Advance Robots

Robotics technology has made measurable strides in the last few years. Today’s robots can move with greater precision over a more flexible range of motion, while handling heavier payloads. Advances in vision systems and software are giving robots the ability to recognize and handle a wider range of parts than before, and make decisions that only humans could previously perform.

Posted in: Articles, Motion Control, Computer software and hardware, Imaging and visualization, Performance upgrades, Robotics

Read More >>

Understanding Robot Movements Through Kinematics

Many robotic and mechanical systems require the calculation of kinematic equations to express the relationship between variables that are to be controlled (motor/actuator position obtained via feedback sensors and manipulated by motors/actuators) and variables that are to be commanded, such as the position of a tool tip or objective.

Posted in: Articles, Motion Control, Kinematics, Robotics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.