Special Coverage

Home

Modeling and Control of Aerothermoelastic Effects

This method makes it possible to design controls to compensate for aerothermoelasticity. Aerothermoelasticity comprises those aspects of the dynamics of an aircraft that are caused by flexibility and heating during flight. The concept of aerothermoelasticity is particularly important for hypersonic vehicles that operate at extremely high dynamic pressures. The design requirements for such vehicles often introduce long and thin fuselages subject to elastic bending in low- frequency vibrational modes. Furthermore, surface heating can significantly change the stiffness characteristics of these modes. These aerothermoelastic effects must be considered in the synthesis and analysis of control systems.

Posted in: Briefs

Read More >>

Algorithms for Haptic Rendering of 3D Objects

Tactual displays provide the sensations of touching computationally simulated objects. Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Recovering Residual Xenon Propellant for an Ion Propulsion System

Most of the otherwise unusable xenon is recovered. Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon.

Posted in: Briefs, TSP

Read More >>

System Would Detect Foreign-Object Damage in Turbofan Engine

Vibration-sensor and gas-path-analysis data would be fused. A proposed data-fusion system, to be implemented mostly in software, would further process the digitized and preprocessed outputs of sensors in a turbofan engine to detect foreign-object damage (FOD) [more precisely, damage caused by impingement of such foreign objects as birds, pieces of ice, and runway debris]. The proposed system could help a flight crew to decide what, if any, response is necessary to complete a flight safely, and could aid mechanics in deciding what post-flight maintenance action might be needed.

Posted in: Briefs, TSP

Read More >>

Cargo-Positioning System for Next-Generation Spacecraft

A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54- cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/ quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position-adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three — one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

Posted in: Briefs, TSP

Read More >>

Controlling Herds of Cooperative Robots

A document poses, and suggests a program of research for answering, questions of how to achieve autonomous operation of herds of cooperative robots to be used in exploration and/or colonization of remote planets. In a typical scenario, a flock of mobile sensory robots would be deployed in a previously unexplored region, one of the robots would be designated the leader, and the leader would issue commands to move the robots to different locations or aim sensors at different targets to maximize scientific return. It would be necessary to provide for this hierarchical, cooperative behavior even in the face of such unpredictable factors as terrain obstacles. A potential-fields approach is proposed as a theoretical basis for developing methods of autonomous command and guidance of a herd. A survival-of-the-fittest approach is suggested as a theoretical basis for selection, mutation, and adaptation of a description of (1) the body, joints, sensors, actuators, and control computer of each robot, and (2) the connectivity of each robot with the rest of the herd, such that the herd could be regarded as consisting of a set of artificial creatures that evolve to adapt to a previously unknown environment. A distributed simulation environment has been developed to test the proposed approaches in the Titan environment. One blimp guides three surface sondes via a potential field approach. The results of the simulation demonstrate that the method used for control is feasible, even if significant uncertainty exists in the dynamics and environmental models, and that the control architecture provides the autonomy needed to enable surface science data collection.

Posted in: Briefs, TSP

Read More >>

Modification of a Limbed Robot to Favor Climbing

A kinematically simplified design affords several benefits. The figure shows the LEMUR IIb, which is a modified version of the LEMUR II — the second generation of the Limbed Excursion Mechanical Utility Robot (LEMUR). Except as described below, the LEMUR IIb hardware is mostly the same as that of the LEMUR II. The IIb and II versions differ in their kinematic configurations and characteristics associated with their kinematic configurations. The differences are such that relative to the LEMUR II, the LEMUR IIb is simpler and is better suited to climbing on inclined surfaces.

Posted in: Mechanics, Briefs, TSP

Read More >>

White Papers

Next-Generation, Miniature High Voltage Power Modules
Sponsored by EMCO High Voltage
Reverse Engineering
Sponsored by Servometer
How to Maximize Temperature Measurement Accuracy
Sponsored by VTI Instruments
IEC 61131-3 Now in Motion
Sponsored by Trio Motion
Spherical Plain Bearing
Sponsored by AST Bearings
An Alternative to Check Fixtures
Sponsored by Faro

White Papers Sponsored By: