Special Coverage

Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applicationst
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine

Controller for Driving a Piezoelectric Actuator at Resonance

Unpredictable variations in resonance frequency are tracked. A digital control system based partly on an extremum-seeking control algorithm tracks the changing resonance frequency of a piezoelectric actuator or an electrically similar electromechanical device that is driven by a sinusoidal excitation signal and is required to be maintained at or near resonance in the presence of uncertain, changing external loads and disturbances. Somewhat more specifically, on the basis of measurements of the performance of the actuator, this system repeatedly estimates the resonance frequency and alters the excitation frequency as needed to keep it at or near the resonance frequency. In the original application for which this controller was developed, the piezoelectric actuator is part of an ultrasonic/sonic drill/corer. Going beyond this application, the underlying principles of design and operation are generally applicable to tracking changing resonance frequencies of heavily perturbed harmonic oscillators.

Posted in: Briefs, Electronics & Computers


Coaxial Electric Heaters

These devices can be used safely where magnetic fields are not tolerated. Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings.

Posted in: Briefs, TSP, Electronics & Computers


High-Density, High-Bandwidth, Multilevel Holographic Memory

Multiple terabytes could be read or written at a multigigahertz rate. A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data-transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold ≈1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s.

Posted in: Briefs, TSP, Electronics & Computers


Dual-Input AND Gate From Single-Channel Thin-Film FET

These transistors show potential as large-area, low-cost electronic circuitry on rigid and flexible substrates. A regio-regular poly (3-hexylthiophene) (RRP3HT) thin-film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. RRP3HT is a semiconducting polymer that has a carrier mobility and on/off ratio when used in a field effect transistor (FET) configuration. This commercially available polymer is very soluble in common organic solvents and is easily processed to form uniform thin films. The most important polymer-based device fabricated and studied is the FET, since it forms the building block in logic circuits and switches for active matrix (light-emitting-diode) (LED) displays, smart cards, and radio frequency identification (RFID) cards.

Posted in: Briefs, TSP, Semiconductors & ICs


Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

Emission tips and a gate electrode are integrated into a monolithic device. Figure 1. A Gate Electrode Overhangs a recess containing an array of bundles of carbon nanotubes (see part a). In part (b) are scanning electron micrograph (SEM) images of fabricated field-emitter devices.A continuing effort to develop carbon- nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime — a concept that was discussed in more detail in “Arrays of Bundles of Carbon Nanotubes as Field Emitters” (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located [see Figure 1(a)], such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

Posted in: Briefs, Manufacturing & Prototyping


Photochemically Synthesized Polyimides

Single monomers are polymerized by exposure to ultraviolet light, without heating. An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 °C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature.

Posted in: Briefs, TSP, Materials


Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass

Preparation of bond surfaces is critical to success. A process for hydroxide-assisted bonding has been developed as a means of joining optical components made of ultra-low-expansion (ULE) glass, while maintaining sufficiently precise alignment between. The process is intended mainly for use in applications in which (1) bonding of glass optical components by use of epoxy does not enable attainment of the required accuracy and dimensional stability and (2) conventional optical contacting (which affords the required accuracy and stability) does not afford adequate bond strength.

Posted in: Briefs, Materials


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.