Special Coverage

Home

Lighting the Way for Quicker, Safer Healing

Who's to say that a little light can't go a long way? Tiny light-emitting diode (LED) chips used to grow plants in space are lighting the way for cancer treatment, wound healing, and chronic pain alleviation on Earth.

Posted in:

Read More >>

Submarine Design Certified on FEA and Sensor Testing

The American Bureau of Shipping certified a submarine solely on the basis of finite element analysis (FEA) and strain sensor testing. Submarine design typically follows American Bureau of Shipping (ABS) code, which establishes properties such as hull thickness, frame stiffness, and porthole and hatch design. During certification, ABS evaluates whether a design follows the relevant codes and then certifies it or not on that basis. The design of a deep-diving submarine was so unique that some ABS rules could not be adhered to.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Simplified Fabrication of Helical Copper Antennas

From concept to working prototype takes just a few hours. A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

Posted in: Briefs, TSP

Read More >>

White Papers

Finite Element Implementation of Advanced Failure Criteria for Composites NASA recently developed LaRC02, a set of first-ply-failure criteria for composites that have been shown to be accurate and physically consistent. This white paper from Noran Engineering describes the LaRC02 criterion features and its implementation into NEiNastran.

Posted in: Blog

Read More >>

Laser Measurement



Posted in: Blog

Read More >>

Repairing Chipped Silicide Coatings on Refractory Metal Substrates

Two methods have been demonstrated to be feasible. The space shuttle orbiter’s reaction control system (RCS) is a series of small thrusters that use hypergolic fuels to orient the orbiter in space. The RCS thrusters are constructed from a special niobium-based alloy — the C-103. This alloy retains excellent mechanical properties from cryogenic temperature all the way up to 2,500 °F (1,370 °C). Despite its excellent, high-temperature properties, C-103 is susceptible to rapid oxidation at elevated temperatures. Were the naked C-103 alloy exposed to the operational thruster environment, it would rapidly oxidize, at least losing all of its structural integrity, or, at worst, rapidly “burning.” Either failure would be catastrophic. To prevent this rapid oxidation during thruster firing, the RCS thrusters are coated with a silicide-based protective coating — the R512a. Over time, this protective coating becomes weathered and begins to develop chips. Launch Commit Criteria limit the diameter and depth of an acceptable pit; otherwise, the thruster must be removed from the orbiter — a very costly, time-consuming procedure. The authors have developed two methods to repair damaged R512a coatings on C-103.

Posted in: Briefs, TSP

Read More >>

Momentum Measurement



Posted in: Blog

Read More >>