Special Coverage

Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Method of Bonding Dissimilar Materials
Sonar Inspection Robot System
Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles
Method and Apparatus for Measuring Surface Air Pressure
Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner
Self-Healing Wire Insulation
Home

Strong, Lightweight, Porous Materials

These materials, derived from silica aerogels, can be tailored to have superior properties. A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets XAerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

Posted in: Briefs, TSP, Materials

Read More >>

Nanowicks

Fiber geometries could be tailored for pumping, filtering, mixing, separating, and other effects. Nanowicks are dense mats of nanoscale fibers that are expected to enable the development of a variety of novel capillary pumps, filters, and fluidic control devices. Nanowicks make it possible obtain a variety of novel effects, including capillary pressures orders of magnitude greater than those afforded by microscale and conventional macroscale wicks. While wicking serves the key purpose of transporting fluid, the nanofiber geometry of a nanowick makes it possible to exploit additional effects — most notably, efficient nanoscale mixing, fluidic effects for logic or control, and ultrafiltration (in which mats of nanofibers act as biomolecular sieves).

Posted in: Briefs, TSP, Materials

Read More >>

Lightweight Thermal Protection System for Atmospheric Entry

The material withstands up to 1,970 K to protect wing leading edges and nose caps on hypersonic vehicles. TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation- resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal- conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle.

Posted in: Briefs, TSP, Materials

Read More >>

Rapid and Quiet Drill

This is an all-ultrasonic variant of previously reported ultrasonic/sonic drills. The figure depicts selected aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Hydrogen Peroxide Concentrator

Water is removed through selectively permeable membranes. A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The need for this or a similar invention arises for the following reasons:

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

MMIC Amplifiers for 90 to 130 GHz

Output power exceeds that of prior solid-state amplifiers operating above 110 GHz. The figure shows two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 – 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

C Namelist Facility

C Namelist Facility (CNL) is a package of software that supports the development of data-driven programs that utilize relatively free-form input files (e.g., text files) to control complex operations. The only comparable prior namelist facility is built into Fortran and does not support arrays or records. Newer computing languages, including C and Pascal, do not include built-in namelist facilities. A namelist facility enables a program to utilize relatively free-form input files that contain assignment statements that give values to variables. Variables to which values are not assigned in input files remain unchanged; therefore, it becomes possible to have default values set by static or dynamic initialization of values prior to namelist input and updating of values is optional. Because it is not required to include values of variables in namelist input files, new parameters can be added to evolving programs without rendering old namelist input files obsolete — provided that the new parameters have useful default values. It should be possible to execute CNL in any operating system that supports the ANSI C programming language. It has been executed in several variants of Unix and in VxWorks.

Posted in: Briefs, Information Sciences

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.