Special Coverage

Home

Simulating Flights of Future Launch Vehicles and Spacecraft

Marshall Aerospace Vehicle Representation in C (MAVERIC) is a computer program for generic, low-to-high-fidelity simulation of the flight(s) of one or more launch vehicle(s) or spacecraft. MAVERIC is designed to accommodate multi-staged vehicles, powered serially or in parallel, with multiple engines, tanks, and cargo elements. Engines can be of jet or conventional rocket types, using either liquid or solid propellants.

Posted in: Software, Briefs, TSP

Read More >>

TMS for Instantiating a Knowledge Base With Incomplete Data

A computer program that belongs to the class known among software experts as output truth-maintenance systems (output TMSs) has been devised as one of a number of software tools for reducing the size of the knowledge base that must be searched during execution of artificial-intelligence software of the rule-based inference engine type in a case in which data are missing. This program determines whether the consequences of activation of two or more rules can be combined without causing a logical inconsistency. For example, in a case involving hypothetical scenarios that could lead to turning a given device on or off, the program determines whether a scenario involving a given combination of rules could lead to turning the device both on and off at the same time, in which case that combination of rules would not be included in the scenario.

Posted in: Briefs, TSP

Read More >>

Automated Design of Restraint Layer of an Inflatable Vessel

A Mathcad computer program largely automates the design and analysis of the restraint layer (the primary load-bearing layer) of an inflatable vessel that consists of one or more sections having cylindrical, toroidal, and/or spherical shape(s). A restraint layer typically comprises webbing in the form of multiple straps. The design task includes choosing indexing locations along the straps, computing the load at every location in each strap, computing the resulting stretch at each location, and computing the amount of undersizing required of each strap so that, once the vessel is inflated and the straps thus stretched, the vessel can be expected to assume the desired shape.

Posted in: Briefs, TSP

Read More >>

SiC Multi-Chip Power Modules as Power-System Building Blocks

Fault-tolerant power-supply systems could be constructed and expanded relatively inexpensively. The term “SiC MCPMs” (wherein “MCPM” signifies “multi-chip power module”) denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand.

Posted in: Briefs

Read More >>

Computational Workbench for Multibody Dynamics

PyCraft is a computer program that provides an interactive, workbench-like computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator-Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the PyCraft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.

Posted in: Briefs, TSP

Read More >>

Predicting Rocket or Jet Noise in Real Time

Measurement data can be analyzed in real time. A semi-empirical theoretical model and a C++ computer program that implements the model have been developed for use in predicting the noise generated by a rocket or jet engine. The computer program, entitled the Realtime Rocket and Jet Engine Noise Analysis and Prediction Software, is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for real-time prediction and measurement of noise emitted by rocket and jet engines. [The other main subsystem, consisting largely of acoustic instrumentation and electronic hardware, is described in “Wireless Acoustic Measurement System,” which appears elsewhere in this section.

Posted in: Briefs

Read More >>

Spiral Orbit Tribometer

Friction and lubricant degradation rate can be quantified rapidly. The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process.

Posted in: Machinery & Automation, Mechanics, Briefs, TSP

Read More >>