Special Coverage

Home

Composite Solid Electrolyte Containing Li+- Conducting Fibers

Li+-ion conductivities are greater than those achieved before. Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are highmolecular- weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li+- conductive, inorganic fibers.

Posted in: Briefs, TSP

Read More >>

Making Activated Carbon by Wet Pressurized Pyrolysis

Thermomechanical instabilities and associated frequency instabilities are reduced. A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams.

Posted in: Briefs

Read More >>

Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. Invented in the 1940s and named after its inventor (R. V. Pound), the original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. Heretofore, Pound circuits used in conjunction with cryogenic resonators have included room-temperature electronic components coupled to the resonators via such inter-connections as coaxial cables. The thermo mechanical instabilities of these inter-connections give rise to frequency instabilities. In a cryogenic Pound circuit of the present improved type, all of the active electronic components, the inter-connections among them, and the inter-connections between them and the resonator reside in the cryogenic environment along with the resonator and, hence, are thermo-mechanically stabilized to a large degree. Hence, further, frequency instabilities are correspondingly reduced.

Posted in: Briefs, TSP

Read More >>

Generating a 2D Representation of a Complex Data Structure

A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex ndimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means. The purpose served by this representation is to assist the user in visualizing and understanding the complex data structure or arbitrarily dimensioned object. This is the only known program that enables a programmer to map an n-dimensional data structure to a flat 2D space. This program does not depend upon the hardware characteristics of a particular output device, and can be executed on a variety of computers from different manufacturers. It can be distributed in source-code or binary-code form. It requires a Lisp compiler. It has no specific memory requirements and depends upon the other software with which it is used and application programs running in it. This software is implemented as a library that is called by, and becomes folded into, the developmental other software.

Posted in: Briefs, TSP

Read More >>

Conversion Between Osculating and Mean Orbital Elements

Osculating/Mean Orbital Element Conversion (C version) (OSMEANC) is a C-language computer program that performs precise conversions between osculating and mean classical orbital elements. OSMEANC can be used for precise design of spacecraft missions and maneuvers and precise calculation of planetary orbits. The program accounts for the full complexity of gravitational fields, including aspherical and third-body effects. In comparison with prior software used for the same purposes, OSMEANC offers greater accuracy in conversion: By virtue of inclusion of high-order gravitational and third-body effects, variations in semimajor axes are calculated to meter-level accuracy. OSMEANC is delivered as a callable shared library. It can be built for any platform with a C compiler. The user interface is via a Python-language wrapper script that can be replaced by the user. OSMEANC is mature and is the product of a significant upgrade from a Fortran version that has been in use since 1991.

Posted in: Briefs, TSP

Read More >>

New Software for Predicting Charging of Spacecraft

The NASA/Air Force Spacecraft Charging System Analyzer Program (Nascap-2K) is a comprehensive update, revision, and extension of several NASA and Air Force codes for predicting electrical charging of spacecraft. Nascap-2K integrates the capabilities and models included in four independent programs: NASCAP/LEO for low-Earth orbits, NASCAP/GEO for geosynchronous orbits, POLAR for auroral charging in polar orbits, and DynaPAC (Dynamic Plasma Analysis Code) for time-dependent plasma interactions. While each of the earlier codes works well for the range of problems for which it was designed, by today’s standards these codes are difficult to learn, cumbersome to use, and overly restrictive in their geometric modeling capabilities. Nascap-2K incorporates these models into a single software package that includes spacecraft surface modeling, spatial gridding, environmental specifications, calculating scripting, and post-processing analysis and visualization. The provided material properties database includes values from earlier programs as well as values from recent measurements. Development of Nascap-2K continues with future capabilities to include interactions with dense plasma such as those produced by electric propulsion.

Posted in: Briefs

Read More >>

Perovskite Superlattices as Tunable Microwave Devices

Interfacial interactions between paraelectric materials induce quasi-ferroelectric behavior. Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters.

Posted in: Briefs, TSP

Read More >>