Special Coverage

Home

Amplifying Electrochemical Indicators

Reporter compounds can be formulated for high sensitivity and miniaturization of sensor units. Dendrimeric reporter compounds have been invented for use in sensing and amplifying electrochemical signals from molecular recognition events that involve many chemical and biological entities. These reporter compounds can be formulated to target specific molecules or molecular recognition events. They can also be formulated to be, variously, hydrophilic or amphiphilic so that they are suitable for use at interfaces between (1) aqueous solutions and (2) electrodes connected to external signal-processing electronic circuits. The invention of these reporter compounds is expected to enable the development of highly miniaturized, low-power-consumption, relatively inexpensive, mass-producible sensor units for diverse applications, including diagnoses of infectious and genetic diseases, testing for environmental bacterial contamination, forensic investigations, and detection of biological warfare agents.

Posted in: Materials, Briefs, TSP

Read More >>

Dr. Walter Merrill, Associate for Business Development, John H. Glenn Research Center, Cleveland, OH

Dr. Walter MerrillDr. Walter Merrill is involved in a variety of programs aimed at forming partnerships with private and public entities. For the past five years, he has been working towards developing microelectromechanical systems (MEMS) devices that are made out silicon carbide. In that capacity, Dr. Merrill was instrumental in helping NASA Glenn Research Center, the State of Ohio, and Case Western Reserve University launch the Glennan Microsystems Initiative to address the research, development, and application needs of NASA and industry in the field of MEMS.

Posted in: Who's Who

Read More >>

Better End-Cap Processing for Oxidation-Resistant Polyimides

Cross-linking in an inert atmosphere (as opposed to air) yields better results. A class of end-cap compounds that increase the thermo-oxidative stability of polyimides of the polymerization of monomeric reactants (PMR) type has been extended. In addition, an improved processing protocol for this class of endcap compounds has been invented. The class of end-cap compounds was described in “End Caps for More Thermo-Oxidative Stability in Polyimides” (LEW-17012), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 32. To recapitulate: PMR polyimides are often used as matrix resins of high-temperature- resistant composite materials. These end-cap compounds are intended to supplant the norbornene end cap (NE) compound that, heretofore, has served to limit molecular weights during oligomerization and, at high temperatures, to form cross-links that become parts of stable network molecular structures. NE has been important to processability of high-temperature resins because (1) in limiting molecular weights, it enables resins to flow more readily for processing and (2) it does not give off volatile byproducts during final cure and, therefore, enables the production of voidfree composite parts. However, with respect to ability of addition polymers to resist oxidation at high temperature, NE has been a “weak link.” Consequently, for example, in order to enable norbornene-end-capped polyimide matrices to last for lifetimes up to 1,000 hours, it is necessary to limit their use temperatures to =315 °C.

Posted in: Materials, Briefs

Read More >>

David Wilt, Electrical Engineer, NASA Glenn Research Center, Cleveland, OH

David WiltAs part of the Forward Technology Solar Cell Experiment (FTSCE), a team of engineers from NASA Glenn, the Massachusetts Institute of Technology, and Ohio State University has developed a new type of solar cell that is durable, lightweight, and highly efficient. David Wilt is an electrical engineer at NASA Glenn who is working on the project.

Posted in: Who's Who

Read More >>

Masked Proportional Routing

This procedure enables adaptation to changing network conditions. Masked proportional routing is an improved procedure for choosing links between adjacent nodes of a network for the purpose of transporting an entity from a source node (“A”) to a destination node (“B”). The entity could be, for example, a physical object to be shipped, in which case the nodes would represent waypoints and the links would represent roads or other paths between waypoints. For another example, the entity could be a message or packet of data to be transmitted from A to B, in which case the nodes could be computer-controlled switching stations and the links could be communication channels between the stations. In yet another example, an entity could represent a workpiece while links and nodes could represent, respectively, manufacturing processes and stages in the progress of the workpiece towards a finished product. More generally, the nodes could represent states of an entity and the links could represent allowed transitions of the entity.

Posted in: Information Sciences, Briefs, TSP

Read More >>

Feature-Identification and Data-Compression Software

A report discusses the continuing development of Windows Interface for Nominal Displacement Selection (WINDS), a computer program for automated analysis of images of the Sun and planets acquired by scientific instruments aboard spacecraft. WINDS is intended to afford capabilities for identification of features, measurement of displacements and velocities, analysis of terrain and of atmospheres, and synthesis of animation sequences of images of terrains and atmospheres from small sets of samples by use of velocity based interpolation. A major element of WINDS will be a nonlinear correlator capable of tracking small features in complex image sequences. For dynamic image sequences, the correlator will enable compression of data by factors >100. In processing image data, WINDS will take account of such factors as texture in image data, rotation of features during measurement intervals, effects of viewing and solar illumination angles, and vertical structures of atmospheres. WINDS will also take account of positions, aiming directions, and fields of view of cameras to determine three-dimensional feature structures by use of triangulation and stereoscopic analysis techniques.

Posted in: Information Sciences, Briefs, TSP

Read More >>

Taumi Daniels, TAMDAR Project Lead, NASA's Langley Research Center,Hampton, VA

Taumi DanielsWeather forecasters in the middle of the United States are making better local predictions for pilots thanks to an airborne sensor being tested by NASA's Aviation Safety Program. Taumi Daniels led the team of researchers at Langley Research Center that designed, built, and equipped dozens of Mesaba Airlines aircraft with the Tropospheric Airborne Meteorological Data Report instrument (TAMDAR) that allows aircraft to automatically sense and report atmospheric conditions. The Georgia Institute of Technology Research Institute, Atlanta, GA, and AirDAT, L.L.C., Morrisville, NC, developed TAMDAR for NASA.

Posted in: Who's Who

Read More >>

White Papers

Windows CE Development for RISC Computers Made Easy
Sponsored by Sealevel
Determining an Effective Analog Sampling Rate
Sponsored by Sealevel
Interaction of Intermodulation Products between DUT and Spectrum Analyzer
Sponsored by Rohde and Schwarz A and D
T&M Solutions for Software Defined Radios (SDR)
Sponsored by Rohde and Schwarz A and D
Metal Injection Molding Turns the Volume Up, and Down
Sponsored by Proto Labs
Optimizing an Electromechanical Device with Multidimensional Analysis Software
Sponsored by Integrated Engineering Software

White Papers Sponsored By: