Special Coverage

Home

Biomimetic/Optical Sensors for Detecting Bacterial Species

Bacteria in liquid samples could be detected in real time. Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum- signaling compounds are acylhomoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum.

Posted in: Medical, Briefs

Read More >>

Analysis of Membrane Lipids of Airborne Micro-Organisms

A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry.This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings (“sick-building syndrome”). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

Posted in: Medical, Briefs

Read More >>

Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

Diagnostically significant signal features can be identified automatically by computational analysis. A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure.

Posted in: Medical, Briefs

Read More >>

Seeing (infra)Red: InGaAs Conquers Imaging, Sensing, Telecom

Indium gallium arsenide, or InGaAs, is an alloy of gallium arsenide and indium arsenide. In a more general sense, it belongs to the InGaAsP quaternary system that consists of alloys of indium arsenide (InAs), gallium arsenide (GaAs), indium phosphide (InP), and gallium phosphide (GaP). As gallium and indium belong to Group III of the Periodic Table, and arsenic and phosphorus belong to Group V, these binary materials and their alloys are all III-V compound semiconductors.

Posted in: Features, ptb catchall, Photonics, Articles

Read More >>

Spectral vs. Coherent Beam Combining: How Do They Compare?

Partial reflectors in interferometers and polarization-sensitive devices (beam splitters used in reverse) such as beam-splitting cubes are common examples of systems that combine two beams (adding beams so that they are co-linear). While these components perform beam combining, they typically are inefficient and/or limited in the number of beams that can be combined. Polarization beam combining, for instance, only works with two beams because the light has only two distinguishable states.

Posted in: Features, ptb catchall, Photonics, Articles

Read More >>

Optics Program Modified for Multithreaded Parallel Computing

NASA’s Jet Propulsion Laboratory, Pasadena, California A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on p-threads [POSIX Thread, (where “POSIX” signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>

Enhanced-Contrast Viewing of White-Hot Objects in Furnaces

Band-pass- and polarization-filtered laser light exceeds polarization-suppressed blackbody light. Marshall Space Flight Center, Alabama An apparatus denoted a laser image contrast enhancement system (LICES) increases the contrast with which one can view a target glowing with blackbody radiation (a white-hot object) against a background of blackbody radiation in a furnace at a temperature as high as ≈1,500 °C. The apparatus utilizes a combination of narrowband illumination, along with band-pass filtering and polarization filtering to pass illumination reflected by the target while suppressing blackbody light from both the object and its background.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>