Special Coverage

Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing

Printed Electronics Primer: an Introduction to the Basics of Printed Electronics

This white paper provides an overview of how printed electronics (PE) can help you fit more functionality into smaller spaces, while maximizing cost efficiency. You will learn the basic terminology and gain an understanding of today’s PE industry, including prevalent technologies, materials and manufacturing processes.

Posted in: White Papers, Communications, Electronics & Computers, Medical
Read More >>

Imaging Detonations of Explosives

Using high-speed camera pyrometers to measure and map fireball/shock expansion velocities.

An effort has been made within the US Army Research Laboratory (ARL) to extract quantitative information on explosive performance from high-speed imaging of explosions. Explosive fireball surface temperatures are measured using imaging pyrometry (2-color 2-camera imaging pyrometer; full-color single-camera imaging pyrometer). Framing cameras are synchronized with pulsed laser illumination to measure fireball/shock expansion velocities, enabling calculation of peak air-shock pressures. Multicamera filtering at different wavelengths enables visualization of light emission by some reactant species participating in energy release during an explosion. Measurement of incident and reflected shock velocities is used to calculate shock energy on a target.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Thermodynamics, Thermodynamics, Defense industry, Missiles
Read More >>

Laser Integration on Silicon Photonic Circuits Through Transfer Printing

New fabrication approach allows the massively parallel transfer of III-V coupons to a silicon photonic target wafer.

The purpose of this project was to develop a transfer printing process for the massively parallel integration of III-V lasers on silicon photonic integrated circuits. Silicon has long offered promise as the ultimate platform for realizing compact photonic integrated circuits (PICs). That promise stems in part from the material's properties: the high refractive-index contrast of silicon allows strong confinement of the optical field, increasing light-matter interaction in a compact space—a particularly important attribute for realizing efficient modulators and high-speed detectors.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics, Integrated circuits, Lasers, Integrated circuits, Lasers, Fabrication, Materials properties, Semiconductors
Read More >>

Determining Detection and Classification Potential of Munitions Using Advanced EMI Sensors in the Underwater Environment

Electromagnetic induction could be used to locate and characterize potentially dangerous sunken metallic objects.

Hazardous ordnance items are present along coastlines and in rivers and lakes in waters shallow enough to cause concerns for human recreational and industrial activities. The presence of water makes it difficult to detect and remove these hazardous legacies induced from wars, military training and deliberate disposal. Various techniques have been proposed to detect and characterize Unexploded Ordnances (UXO) and discarded military munitions (DMM) in the underwater environment including acoustic waves, magnetometery, and electromagnetic induction (EMI).

Posted in: Briefs, TSP, TSP, Aerospace, Sensors, Sensors and actuators, Sensors and actuators, Water, Defense industry, Conductivity, Hazardous materials, Marine vehicles and equipment, Missiles
Read More >>

High Energy Computed Tomographic Inspection of Munitions

Inspection system provides additional level of quality assurance for R&D, reverse engineering, and malfunction investigations.

An advance computed tomography (CT) system was recently built for the U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, for the inspection of munitions. The system is a charged coupled device (CCD) camera based CT system designated with the name “experimental Imaging Media” (XIM). The design incorporated shielding for use up to 4MeV x-ray photons and integrated two separate cameras into one single field of view (FOV). Other major distinguishing characteristics include its processing functions to digitally piece the two cameras together, use of advanced artifact reduction principles, performing reconstruction simultaneously during acquisition, and its development in accurate beam hardening corrections through digital means.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics, Charge coupled devices, Imaging, Imaging and visualization, Charge coupled devices, Imaging, Imaging and visualization, Defense industry, Inspections, Missiles
Read More >>

Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE)

Operating at higher frequencies than other types of radar produces tighter beams and finer resolution.

An accurate view of the physical world is frequently vital. For example, rotary wing aircraft pilots must have knowledge of the terrain in order to safely fly their aircraft. Therefore, systems capable of generating images of the environment of sufficient quality to facilitate the decision process are necessary. The product of such a system is illustrated in Figure 1.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging, Cartography, Imaging, Imaging and visualization, Radar, Cartography, Imaging, Imaging and visualization, Radar, Terrain
Read More >>

Development of Photoacoustic Sensing Platforms

Research focuses on sensor miniaturization and detection of chemical targets both proximally and at range.

In recent years, photoacoustic spectroscopy (PAS) has emerged as an attractive and powerful technique well suited for sensing applications. The development of high-power radiation sources and more sophisticated electronics, including sensitive microphones and digital lock-in amplifiers, have allowed for significant advances in PAS. Furthermore, photoacoustic (PA) detection of IR absorption spectra using modern tunable lasers offers several advantages, including simultaneous detection and discrimination of numerous molecules of interest. Successful applications of PAS in gases and condensed matter have made this a notable technique and it is now studied and employed by scientists and engineers in a variety of disciplines.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics, Amplifiers, Electronic equipment, Lasers, Sensors and actuators, Spectroscopy, Amplifiers, Electronic equipment, Lasers, Sensors and actuators, Spectroscopy, Acoustics, Acoustics
Read More >>

Drones Spot Gas Leaks From the Sky

As part of a project to improve energy pipeline industry safety, a JPL-developed miniature methane sensor is flight tested on a small unmanned aerial system. (Credit: University of California, Merced)

Posted in: Articles, Optics, Sensors, Gases, Hazardous materials, Unmanned aerial vehicles
Read More >>

Compact Active Vibration Control System

This system provides active damping of flexible structures using a simple and compact actuator, sensor, and control system.

NASA Langley Research Center has developed a point sensor and piezoelectric actuator system to actively sense and reduce vibrations in flexible structures. The system uses a directional piezoelectric actuator that couples to an underlying structure like four point forces acting normal to the structure. Four miniature accelerometers are located coincident with the piezoelectric point forces to create a matched actuator/sensor pair. This matched pair enables feedback control to be implemented using simple, robust, negative feedback that requires no knowledge of the dynamics of the structure, and can be implemented using analog electronics. When attached to a flexible structure, this active damping system can reduce vibrations in a variety of applications. Compared to other systems, this approach offers good performance with a simple and compact control system.

Posted in: Briefs, Sensors, Dampers and shock absorbers, Dampers or shock absorbers, Electronic equipment, Sensors and actuators, Electronic equipment, Sensors and actuators, Noise, Vibration, Noise, Vibration
Read More >>

Self-Assembling, Reversible, Reagentless Biosensor

Applications include pathogen detection, industrial monitoring, chemical detection, and healthcare and drug discovery.

Recognition-based biosensors capable of specifically detecting chemicals, toxins, and bio-agents in their environment are of increasing importance. An important goal in biosensor evolution is production of nanoscale assemblies capable of continuously monitoring concentrations of target species in a simple, reliable manner. This is accomplished by designing sensor components to carry out analyte recognition and binding while simultaneously producing useful output signals via an integrated signal transduction system. Optically addressed biosensors of this type often employ fluorescence resonance energy transfer (FRET) in signal transduction. FRET has been employed in carefully designed sensing systems for proteins, peptides, nucleic acids, and other small molecules.

Posted in: Briefs, Sensors, Sensors and actuators, Sensors and actuators, Diagnosis, Biomaterials, Chemicals, Materials identification, Materials properties, Nanotechnology
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.