Special Coverage

Home

Image Processing Method To Determine Dust Optical Density

John F. Kennedy Space Center, Florida Image processing techniques for determining dust optical density in Apollo videos have been developed. The software generates histograms, and calculates the mean and standard deviation, which are then used to match dusty and clear images for the purpose of estimating an effective optical density. A dust thickness model, based on the tilt of the camera and increasing thickness of the dust layer towards the top of the image, is used to account for the distance light travels through dust.

Posted in: Physical Sciences, Imaging, Briefs, TSP

Read More >>

Automatic Lunar Rock Detection and Mapping

NASA’s Jet Propulsion Laboratory, Pasadena, California Safe spacecraft landing on planetary and small body surfaces is of primary concern. Estimation of landing risk is a critical task when evaluating and certifying potential landing sites. Such analyses require the detection and mapping of all potential landing hazards such as rocks and boulders, craters, slopes, and terrain roughness.

Posted in: Information Sciences, Electronics & Computers, Imaging, Briefs

Read More >>

Technique for Finding the Center of an Image of a Rising or Setting Sun Based on Simulated Images

NASA’s Jet Propulsion Laboratory, Pasadena, California A new JPL project requires that the center of the images of a rising or setting Sun be determined with certain accuracy — for example, within 1 km — when the Sun is observed from the International Space Station (ISS). This center-finding technique can be used in applications such as a Sun-Tracker. To meet such needs, a simulation tool was developed for the generation of Sun images observed either on the ground or from space. The new technique enables one to find the center of a Sun image based on simulated images. The technique does not rely on ellipse-fitting to the boundary of a Sun image or other calibration techniques, so the accuracy is not affected by the distortion of Sun images.

Posted in: Information Sciences, Electronics & Computers, Imaging, Briefs, TSP

Read More >>

High/Low-Temperature Contactless RF Probes for Characterizing Microwave Integrated Circuits and Devices

These probing systems can be used in wireless sensors in applications such as oil wells, aircraft engines, and robotic landers. John H. Glenn Research Center, Cleveland, Ohio Low-temperature, contactless radio-frequency (RF) probing systems are necessary for characterizing sensors operating at liquid nitrogen or helium temperatures, and based on superconducting materials. The design and operation of the contactless RF probing systems relies on strong electromagnetic coupling that takes place between two different microwave transmission lines oriented in close proximity, but not in contact with each other, to ensure high thermal isolation. The goal of this work is to develop a reliable, easily constructed, less expensive, contactless RF probe for characterizing microwave integrated circuits (MICs) and devices embedded in sensors fabricated on conformal or non-planar substrates, at elevated or cryogenic temperatures.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Multi-Tone, High-Frequency Synthesizer for CubeSat-Borne Beacon Transmitter for Radio Wave Atmospheric Propagation Studies

John H. Glenn Research Center, Cleveland, Ohio This report presents the design, construction, and test results of a novel multitone, multi-band, high-frequency synthesizer for application in a space-borne (including a CubeSat) beacon transmitter for radio wave atmospheric propagation studies. The beacon transmitter synthesizer design can be tailored to operate in those frequency bands of interest for future space-to-Earth data links, e.g., Q-band (37 to 42 GHz) and E-band (71 to 76 GHz).

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Dynamic Response Determination of an Electronic Printed Circuit Board

Understanding the mechanical reliability of a PCB in an electronic system is an important part of assessing the reliability of the entire system. John Deere Electronic Solutions, Fargo, North Dakota; and John Deere India Pvt Ltd., Maharashtra, India Most of today’s automotive electronic systems are composed of two major mechanical elements: an equipment chassis or enclosure, and a printed circuit board (PCB) assembly. The PCB is composed of laminated copper and FR-4 glass epoxy. These systems often operate in severe vibration environments for extended periods without failing. The vibrations transmitted throughout the PCB induce strains in the connectors, components, and most importantly, the solder joints attaching the components to it.

Posted in: Electronics & Computers, Briefs

Read More >>

Wii Nunchuk Controller for ATHLETE Operations

NASA’s Jet Propulsion Laboratory, Pasadena, California The Arduino platform was used to develop an interface between two otherwise incompatible commercial devices in order to drive the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) rover over long distances. The Portable Operations Terminal consists of three distinct parts: a robot-mounted ruggedized laptop computer containing all of the “ground” support software needed to operate ATHLETE, a handheld computer capable of performing simple problem diagnosis and troubleshooting, and a handheld joystick based on the Wii Nunchuk used to drive ATHLETE with one hand. The physical modifications included an Arduino electronic prototyping board with custom firmware, and various support cables, lanyards, and enclosures to make the device survive the desert environment of the field test.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>