Special Coverage

Home

Surface Densification of Phenolic Impregnated Carbon Ablator

Ames Research Center, Moffett Field, California PICA (phenolic impregnated carbon ablator) was developed for the forebody heat shield of the Stardust Return Capsule. Conventional thermal protection system (TPS) materials of the time (primarily carbon phenolics) had high densities and thermal conductivities, yielding a TPS mass fraction that exceeded mission constraints. PICA was developed in the 1980s and consists of a rigid carbon fibrous substrate infiltrated with phenolic resin, yielding a TPS with good ablation and pyrolysis behavior. In addition, PICA has the advantages of low density coupled with efficient ablative capability at high heat fluxes. Limitations of PICA include relatively low mechanical properties, high recession rates, and poor handling, as the material sheds phenolic powder and is prone to damage from low-velocity impacts.

Posted in: Briefs

Read More >>

Low-Density Flexible Ablators

Ames Research Center, Moffett Field, California NASA has developed a class of low-density, flexible ablators that can be fabricated into heat shields capable of being packaged, stowed, and deployed in space. Several flexible versions have been developed by infiltrating a pyrolyzing silicone resin into flexible, low-density felts made of carbon, polymer, or ceramic materials. The material is produced by immersing a flexible fibrous substrate in a diluted polymer resin, curing the polymer resin using heat and/or catalyst, and removing the solvent.

Posted in: Briefs

Read More >>

Solar-Powered Carbon Dioxide Conversions with Thin-Film Devices

Ames Research Center, Moffett Field, California A nanomaterial thin-film device provides a low-cost, facile fabrication pathway to commercialize the technology to the sustainable energy market. Metal oxide thin films have been fabricated to a photoelectrochemical cell by solar energy. The prototype device uses both low energy cost for manufacturing and low materials cost for devices. The self-modulated device platform can also find other applications in sensors and detectors. The resultant prototype device can be deployed to the automobile industry or power plants with very low initial costs. The device can also be made extremely compact and efficient. It uses solar energy as the only power source.

Posted in: Briefs

Read More >>

Fiber Metal Laminates Made by the VARTM Process

Fiber metal laminates combine the best properties of the metal and composite. Langley Research Center, Hampton, Virginia Fiber metal laminates (FMLs) are multicomponent materials utilizing metals, fibers, and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed.

Posted in: Briefs, TSP

Read More >>

Method to Produce Copper Nanowires for Interconnect Applications

Ames Research Center, Moffett Field, California Copper replaced aluminum nearly two decades ago as interconnect material in integrated circuit manufacturing due to its better electrical conductivity. The size of the interconnect wire has been steadily decreasing as Moore’s law has been progressing through various feature size generations. The diameter of the interconnect structure is further expected to decrease as silicon technology is poised to march through a few more generations. Alternatives to copper have been reported—notably, materials such as carbon nanotubes. Their success has been limited, and carbon nanotubes have not been integrated into manufacturing practice.

Posted in: Briefs

Read More >>

Web Application: Ground Hardware Management Tool

John F. Kennedy Space Center, Florida An integrated ground support equipment (GSE) tracking and management tool is designed for tracking and managing GSE data used in support of KSC/Ground Systems Development and Operations (GSDO) planning and launch campaigns. This software (the Ground Hardware Management Tool, GHMT) will be fully integrated with the Ground Operations Planning Database (GOPDb) to provide a complete ground operations planning solution.

Posted in: Briefs, Electronics & Computers

Read More >>

Bird Vision System

This system is applicable to commercial airports and military airfields where the likelihood of bird strikes is high, and for environmental studies. John F. Kennedy Space Center, Florida About 2.5 seconds after the launch of STS-114, the first Return to Flight launch after the Columbia accident, a large bird struck the external tank and fell into the exhaust plume. While this particular bird strike did not threaten the vehicle because it did not strike the orbiter, it did raise awareness of the threat of avian fauna present at launch. In response to the avian threat, a Bird Radar system was developed to detect birds above the launch pad. Because of interference with launch systems, the radar system could not span closer than a few hundred feet above the pad. There was a gap region that would not be visible with the radar.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

White Papers

Reverse Engineering
Sponsored by Servometer
Piezo Engineering Tutorial
Sponsored by aerotech
Wire Springs versus Machined Springs A Comparison
Sponsored by helical
How to Turn Your Engineers Into Product Design Superheroes
Sponsored by arena solutions
One Component Epoxies: Versatility and Convenience
Sponsored by master bond
Avionics Reliability – Thermal Design Considerations
Sponsored by Mentor Graphics

White Papers Sponsored By: