Special Coverage

Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water

Safer, Cleaner, Corrosion-Protecting Metal Coatings

LumiShield
Pittsburgh, PA
For more info click here

Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department’s National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a cost-effective technology to reduce that impact. The work resulted in the creation of LumiShield, a new CMU/NETL spinoff that signed a licensing agreement with the laboratory for the ionic liquid solvent for aluminum electroplating process.

Posted in: Application Briefs, Coatings & Adhesives, Materials, Metals, Plating, Aluminum, Coatings Colorants and Finishes, Coatings, colorants, and finishes, Corrosion resistant alloys, Materials properties
Read More >>

Corrosion-Inhibiting Self-Expanding Foam

This anti-corrosion, self-expanding foam is designed for use in hard-to-protect internal structures.

Surfaces such as metal and other corrodible surfaces are often exposed to extreme weathering, temperatures, moisture, impurities, and otherwise damaging external forces that accelerate corrosion. Conventional methods of corrosion protection include applying paints and other coatings, such as petroleum-based undercoatings, with a sprayer to the exposed surface. To be effective, the entire exposed surface must be covered or the corrosion process will be accelerated at the unprotected areas. While open-area surfaces may be easier to protect, those surfaces found in internal cavities within an overall framework can be more challenging to protect. Achieving full coverage on internal surfaces can be extremely difficult, and in some cases impossible without drilling several access openings in the structure. These extraneous openings can compromise the strength of the structure as well as create more entryways for water and debris. This increases the opportunity for corrosion to initiate at the edges of the openings.

Posted in: Briefs, Coatings & Adhesives, Materials, Corrosion, Foams, Metals
Read More >>

Reusable Sponge Absorbs Oil from Entire Water Column

This sponge can be wrung out, the oil collected, and the material reused in oil spill and diesel cleanup situations.

When the Deepwater Horizon drilling pipe blew out seven years ago, beginning the worst oil spill in U.S. history, those in charge of the recovery discovered that the millions of gallons of oil bubbling from the sea floor weren’t all collecting on the surface where it could be skimmed or burned. Some of it was forming a plume and drifting under the surface of the ocean.

Posted in: Briefs, Materials, Water pollution, Lubricating oils, Tools and equipment, Materials properties, Marine vehicles and equipment
Read More >>

Stop-Rotor Rotary Wing Aircraft

This aircraft eliminates the need for long runways or other large launch and recovery systems.

Some unmanned aircraft designs attempt to combine the vertical takeoff and landing (VTOL) and hover capabilities of a helicopter with the increased speed and range capabilities of fixed-wing airplanes. Stop-rotor “nose-sitter” configurations — so named because the aircraft takes off and lands from a nose-down orientation — may offer good hover efficiency and aerodynamic design, but can require complex mechanical systems. These designs can also suffer a significant loss in altitude during transition from helicopter to airplane mode, and involve uneven weight distributions, rendering the aircraft “top heavy” and unwieldy during takeoff and landing. Further, the counter-rotating fuselage and tail of some nose-sitter designs are less practical than aircraft designs with a conventional fuselage orientation and tail rotor. Tiltrotor configurations with tiltable rotating propellers also involve mechanically complex systems and decreased hover efficiency due to higher disk loading. “Tail-sitter” designs — so named because the aircraft takes off and lands from a tail-down orientation — are associated with poor hover efficiency due to high disk loading and an awkward 90-degree attitude change between hover and forward flight modes.

Posted in: Briefs, Aeronautics, Aerospace, Propellers and rotors, Vehicle styling, Entry, descent, and landing, Rotary-wing aircraft, Unmanned aerial vehicles
Read More >>

External Aircraft Noise Reduction Liners

This technology strategically places acoustic liners on the external surface of the aircraft to reduce such engine noise.

NASA Langley Research Center, in collaboration with Boeing and Lockheed Martin, has developed a new external acoustic liner for aircraft noise reduction. While the acoustic liner can be placed on any external aircraft surface, one attractive application is for open-rotor noise reduction. Airframe manufacturers are considering open rotor engines for future aircraft designs as they provide significant fuel savings. However, open rotor engines have no nacelle and thus, do not allow the use of conventional nacelle liners for noise abatement. This technology strategically places acoustic liners on the external surface of the aircraft to reduce such engine noise.

Posted in: Briefs, Aeronautics, Aerospace, Propellers and rotors, Acoustics, Noise, Acoustics, Noise, Aircraft
Read More >>

LAB-ON-A-GLOVE: Enables Onsite Detection of Chemical Threats

Wearable sensors are uniquely placed to fill the technology gap for real-time analytics at the point of need. Seamless integration of chemical sensors into wearable platforms gives the power of laboratory-based chemical analyses directly on the wearer's body. Several biosensors, based primarily on enzyme electrodes, have been incorporated recently into cutting-edge wearable devices to allow non-invasive sensing of lactate, glucose, or alcohol in sweat; uric acid in saliva; and glucose in tears. While the majority of these wearable sensor systems has focused on fitness and healthcare applications, there are growing demands for developing wearable sensor platforms for monitoring hazardous chemicals for diverse security and environmental applications.

Posted in: Articles, Data Acquisition, Detectors, Sensors and actuators, Sensors and actuators, Chemicals, Materials identification, Hazardous materials, Protective clothing
Read More >>

Silicon Nanoparticles Enable Energy-Collecting Windows

Photovoltaic cells are hidden in the window frame, blending invisibly into the built environment.

Technology that embeds silicon nanoparticles into efficient luminescent solar concentrators (LSCs) has been developed. The LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges, where small solar cells can be put in place to capture the energy.

Posted in: Briefs, Energy, Windows and windshields, Solar energy, Nanomaterials
Read More >>

In-flight Global Nonlinear Aerodynamics Modeling and Simulation

Potential applications include aircraft, spacecraft, watercraft, and self-driving cars and trucks.

NASA's Langley Research Center has developed an in-flight global nonlinear aerodynamics modeling and simulation system. The technology replaces the normal labor-intensive iterative process of repeated flight tests and combining locally valid models with a single flight and automatically developed globally valid model. The technology is highly accurate and efficient for developing global aerodynamic and thrust models for aircraft.

Posted in: Briefs, Aeronautics, Aerospace, Simulation and modeling, Aerodynamics, Aircraft, Spacecraft
Read More >>

Motor Control Technology Boosts Performance of Remotely Piloted Aircraft

PC Krause and Associates
West Lafayette, IN
For more info click here

With support from the Air Force Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Program, PC Krause and Associates (PCKA) has developed a system that could meet a wide range of small aircraft electrical power and propulsion system needs. The company was aiming for its new modular motor drive system to fill the gap between existing commercial equipment and custom solutions at a cost that is viable for most remotely piloted aircraft (RPA) platforms.

Posted in: Application Briefs, Motion Control, Motors & Drives, Architecture, Computer software / hardware, Computer software and hardware, Fly-by-wire control systems, Architecture, Computer software / hardware, Computer software and hardware, Fly-by-wire control systems, Electric motors, Military aircraft, Unmanned aerial vehicles
Read More >>

Aqueous Solution Dispersement of Carbon Nanotubes

NASA’s Langley Research Center researchers have developed a novel method to disperse carbon nanotubes in aqueous solutions using chemical buffers. By avoiding the common use of surfactants to achieve dispersion, the researchers have provided a means to maintain biocompatibility of the carbon nanotubes, while also providing a means to functionalize the nanotube surfaces for specific biological and chemical activity. One particular example is the use of this approach to functionalize the surface with nano platinum catalysts to use as electrodes for fuel cells or biofuel cells. Additional surface functionality could provide use for biosensors or delivery of functionalized molecules for medical applications.

Posted in: Briefs, Materials, Fuel cells, Biological sciences, Chemicals, Nanomaterials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.