Special Coverage

Home

Deployable Antenna Circuit Board Material Design and Fabrication Process

This technology has applications in solar arrays for small satellites. NASA’s Jet Propulsion Laboratory, Pasadena, California The Integrated Solar Array and Reflectarray (ISARA) antenna requires a rugged circuit board material that will meet the following requirements: (1) remains sufficiently flat over the required operating temperature range with solar cells mounted, and under full solar illumination, including heat dissipation due to ≈30% efficiency solar cells; (2) provides a sufficiently high-quality RF-grade circuit board material needed to print the reflectarray antenna; (3) is sufficiently thin (<2.5 mm) to fit within the available stowage volume; and (4) has low mass density (≈5 kg/m2).

Posted in: Briefs, TSP, Electronics

Read More >>

Mini-Stamp as a Micro-Display for At-a-Glance Subsystem Information for DSN Links

NASA’s Jet Propulsion Laboratory, Pasadena, California Operators of the Deep Space Network (DSN) attend to numerous tasks with the overall goal of providing continuous support for the world’s deep space missions. This high-stakes operations environment requires operators to understand the state of the DSN and predict what will happen next. Under the Follow-the-Sun initiative that requires remote operations of the highly complex telecommunications equipment, operators will need to remain aware of the state of the entire network rather than just their own facility, and transition fluidly between periods of low activity and periods of high demand.

Posted in: Briefs, TSP

Read More >>

Command and Data Handling for the Magnetospheric Multiscale Mission

Goddard Space Flight Center, Greenbelt, Maryland The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probes (STP) program. The MMS mission, consisting of four identically instrumented spacecraft, will use Earth’s magnetosphere as a laboratory to study magnetic reconnection, a fundamental plasma-physical process that taps the energy stored in a magnetic field and converts it — typically explosively — into heat and kinetic energy in the form of charged particle acceleration and largescale flows of matter.

Posted in: Briefs

Read More >>

Ka-Band Parabolic Deployable Antenna (KaPDA)

This technology provides high-data-rate communication to enable high-fidelity instruments and deep space, interplanetary missions. NASA’s Jet Propulsion Laboratory, Pasadena, California CubeSats provide the ability to conduct relatively inexpensive space missions. Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue as highlighted by a recent NASA centennial challenge proposal. A Ka-band highgain antenna would provide a ≈100× increase of data communication rates over an S-band high-gain antenna, and a ≈10,000× increase over an X-band patch antenna of the same input power, enabling high-rate data communication from deep space or the use of dataintensive instruments from low Earth orbit (LEO).

Posted in: Briefs, TSP

Read More >>

Pyrotechnically Actuated Gas Generator Using Aqueous Methanol

This gas generator ensures successful inflation of a supersonic pilot ballute. NASA’s Jet Propulsion Laboratory, Pasadena, California The largest supersonic parachute ever developed is one of the test articles on the Supersonic Flight Dynamics Test (SFDT) vehicle of the Low Density Supersonic Decelerator (LDSD) project. The typical method for deploying a supersonic parachute from an entry vehicle, by firing it from a mortar, is not viable for this application due to its noncentral location on the vehicle and the associated high reaction force. Instead, the parachute is pulled off the vehicle using the Parachute Deployment Device (PDD). The PDD uses a ballute, a smaller, balloon-like, soft-good drag body that maintains positive internal pressure by ingesting air at supersonic speeds through a set of ram-air inlets. The PDD, being significantly smaller than the supersonic parachute, is deployed using a mortar.

Posted in: Briefs

Read More >>

Deployable Perimeter Truss with Blade Reel Deployment Mechanism

Applications include pop-up tents, deployable deck awnings, and pop-up lawn chairs. NASA’s Jet Propulsion Laboratory, Pasadena, California Solar sail technology depends heavily on the total surface area of the sail. In other words, minimizing mass and volume of its support structure is the main objective, particularly when it comes to launch configuration, i.e. mass, volume constraints, etc. There is a need to develop a low-cost concept of a deployable support structure that can stow in the EELV Secondary Payload Adapter (ESPA) volume, and carries as much sail material as possible. This structure must then be able to deploy the sail material out, and provide the surface area needed.

Posted in: Briefs, TSP

Read More >>

Cantera Integration with T-MATS

John H. Glenn Research Center, Cleveland, Ohio The Toolbox for the Modeling and Analysis of Thermodynamic Systems (TMATS) software package is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink® (MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The updated version of T-MATS (v1.1.1) includes the integration of Cantera, an open source thermodynamic simulation tool. T-MATS was initially described in detail in LEW-19165-1, "Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)", Software Tech Briefs (September 2014), p. 11.

Posted in: Briefs

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.