Special Coverage

High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Lightweight Internal Device to Measure Tension in Hollow- Braided Cordage
System, Apparatus, and Method for Pedal Control
Dust Tolerant Connectors
Home

A Common-Mode Digital Holographic Microscope

This instrument has no moving parts and allows scientists to image in 3D and in real time. NASA’s Jet Propulsion Laboratory, Pasadena, California Digital holography is a fast-growing field in optics, recently spurred by the advent of large-format digital cameras and high-speed computers. This method provides a time-series of volumetric information about a sample, but the instrument itself has no moving parts. It does not compromise performance such as image quality and spatial resolution. However, these systems are typically implemented as optical interferometers with two separate beam paths: one is the reference beam and the other is the science beam. Interferometers are sensitive instruments that are subject to misalignment, and they will have significantly reduced performance in the presence of mechanical vibrations.

Posted in: Briefs, Imaging

Read More >>

Distributed Diagnostics and Prognostics

The distributed health management architecture is comprised of a network of smart sensor devices. Ames Research Center, Moffett Field, California NASA has developed a method that prevents total system failure during emergencies, allowing parts of the system to continue to function, and making overall system recovery faster. A heterogeneous set of system components monitored by a varied suite of sensors and a health monitoring framework has been developed with the power and flexibility to adapt to different diagnostic and prognostic needs. Current state-of-the-art monitoring and health management systems are mostly centralized in nature, where all the processing is reliant on a single processor. This requires information to be sent and processed in one location. With increases in the volume of sensor data as well as the need for associated processing, traditional centralized systems tend to be somewhat ungainly; in particular, when faced with multi-tasking of computationally heavy algorithms. The distributed architecture is more efficient, allows for considerable flexibility in number and location of sensors placed, scales up well, and is more robust to sensor or processor failure.

Posted in: Briefs, Electronics & Computers

Read More >>

Efficient Radiation Shielding Through Direct Metal Laser Sintering

Goddard Space Flight Center, Greenbelt, Maryland Functional and parametric degradation of microcircuits due to total ionizing dose (TID) often poses serious obstacles to deployment of critical state-of-the-art (SOTA) technologies in NASA missions. Moreover, because device dielectrics in which such degradation occurs vary from one fabrication lot to the next, these effects must be reevaluated on a lot-by-lot basis. Often, the most effective mitigation against TID degradation is the addition of radiation shielding to the electronics box. Unfortunately, shielding materials can add significant amounts of mass to a system, particularly when vulnerable parts require shielding over 4π steradians. One method for reducing mass is to apply spot shielding located only on the critical components that require it. Reduced box- and/or spacecraft-level shielding will necessitate more complex spot shielding to protect the component from the omnidirectional radiation environment.

Posted in: Briefs, Electronics & Computers

Read More >>

Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

Applications for the strong, flexible material include thermal insulation and lightweight sandwich structures. John H. Glenn Research Center, Cleveland, Ohio NASA-developed polyimide aerogels are 500 times stronger than conventional silica aerogels. The innovative aerogels represent a revolutionary advance over fragile silica aerogels because they are highly flexible and foldable in thin film form. As a thin film, they can be used to insulate industrial pipelines, automotive shields, and temporary housing structures, and can be used within protective clothing such as firefighting jackets, space suits, and parkas. As a thicker part, they can be easily molded to a shape, or sanded and machined to provide insulation as well as mechanical support. No other aerogel possesses the compressive and tensile strength of the NASA innovation while still retaining its ability to be flexibly folded to contour to whatever shape is needed.

Posted in: Briefs, Materials

Read More >>

Catalytic Oxidation of Organic Contaminants at Reduced Pressure

Marshall Space Flight Center, Alabama The current technology for catalytic oxidation of aqueous organic contaminants at elevated temperature and pressure works well at operating conditions of 265 °F and 70 psia with effluent TOCs (total organic carbon) of less than 0.5 ppm. However, it does not perform well at the reduced temperature, i.e., sub-water-boiling temperature (200 °F), and the reduced pressure such as ambient pressure (14.7 psia) as indicated by the effluent TOCs approximately the same as feed TOC.

Posted in: Briefs, Materials

Read More >>

Approach for Achieving Flame Retardancy While Retaining Physical Properties in a Compatible Polymer Matrix

John F. Kennedy Space Center, Florida NASA’s Kennedy Space Center (KSC) seeks to license its Advanced Fire Retardant Materials to industry. KSC’s scientists have developed processes and know-how to impart fire retardancy to common polymers such as nylons, polyesters, and acrylics. NASA developed this technology for use in personnel protective systems for launch pad personnel engaged in hazardous materials (HAZMAT) operations. The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame-retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends.

Posted in: Briefs, Materials

Read More >>

Metal/Fiber Laminate and Fabrication Using a Porous Metal/Fiber Preform

This technology can be used in aeronautics, pressure vessels and storage tanks, ballistic protection, automotive structures, and composite doors and windows. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed a new technique to enable the preparation of metal/composite hybrid laminates, also known as fiber metal laminates (FML), by depositing metal directly onto fabric using a plasma deposition process. FMLs provide a useful combination of structural and functional properties for both aerospace and non-aerospace applications. Currently, FMLs are prepared in a compression process utilizing a press or autoclave with metallic layers (foils) sandwiched between layers of glass or graphite prepreg (preimpregnated fibers with a matrix resin). The NASA process deposits the metal on the fiber via plasma deposition. The porosity of the coated fabric allows for resin infusion.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.