Special Coverage

Iodine-Compatible Hall Effect Thruster
Precision Assembly of Systems on Surfaces (PASS)
Development of a Novel Electrospinning System with Automated Positioning and Control Software
2016 Create The Future Design Contest Open For Entries
Clamshell Sampler
Shape Memory Alloy Rock Splitter
Deployable Extra-Vehicular Activity Platform (DEVAP) for Planetary Surfaces
Home

Generation-2 Lean Direction Injection System

This technology eliminates the risk of flashback and auto-ignition, and achieves emission and operability goals. John H. Glenn Research Center, Cleveland, Ohio An advanced Lean-Direct-Injection (LDI) turbine engine combustor was developed. Named LDI-II, which stands for second-generation LDI, this technology has vastly improved and expanded the performance characteristics of the initial LDI design by not only exceeding NASA’s N+2 emissions goal, but also meeting the operability requirements of full engine power range. The key enabling feature of the technology is the coherence combination of fuel staging and positioning/sizing of swirler-venturi fuel/air mixer elements.

Posted in: Briefs

Read More >>

Testing Aircraft Electric Propulsion Systems on NASA’s Modular Stand

This test stand allows the aviation industry to test a wide range of electric propulsion systems to understand efficiencies and identify needed design improvements. Armstrong Flight Research Center, Edwards, California As powered flight expands to include electric propulsion technologies, aeronautics designers need to understand the electrical, aerodynamic, and structural characteristics of these systems. Therefore, researchers at NASA’s Armstrong Flight Research Center have developed a modular test stand to conduct extensive measurements for efficiency and performance of electric propulsion systems up to 100 kW in scale.

Posted in: Briefs

Read More >>

Iodine-Compatible Hall Effect Thruster

The use of iodine reduces the technical demands on thruster design. Marshall Space Flight Center, Alabama Iodine-compatible Hall effect thruster. The Hall effect thruster (HET) was designed for long-duration operation with gaseous iodine as the propellant. Iodine is an alternative to the state-of-the-art propellant xenon. Compared to xenon, iodine stores as a solid at much higher density and at a much lower pressure. Because iodine is a halogen, it is reactive with some of the materials with which a Hall thruster is typically constructed. Through research and testing, the new method allows for the HET to be used with iodine propellant for long periods of time.

Posted in: Briefs

Read More >>

Burnable-Poison-Operated Reactor Using Gadolinium Loaded Alloy

Marshall Space Flight Center, Alabama The problem to be resolved in this work was the use of radial control drums as the sole active reactivity control system for nuclear thermal propulsion, which results in significant rocket performance changes during full-power operation. This can result in large inefficiencies in propellant usage, inaccurate estimations in Isp and thrust, and can be a dangerous operation requiring continuous active control of the reactor given the unstable nature of current nuclear thermal rocket reactor designs.

Posted in: Briefs

Read More >>

Airborne Elastic Backscatter and Raman Polychromator for Ash Detection

Marshall Space Flight Center, Alabama Volcanic ash is a significant hazard to aircraft engine and electronics. It has caused damage to unwary aircraft and disrupted air travel for thousands of travelers, costing millions of dollars. The small, jagged fragments of rocks, minerals, and volcanic glass that constitute volcanic ash are about the size of sand and silt. Volcanic ash is hard, does not dissolve in water, is extremely abrasive and corrosive, and conducts electricity when wet. The upper winds transport the particles away to eventual dispersal in an ash cloud. Ash clouds typically form above 20,000 feet, but the lower limit of the initial cloud depends on both the height of the volcanic vent and the vigor with which material is ejected from it.

Posted in: Briefs, Sensors

Read More >>

Intelligent Displacement Sensor Deployment Using MTConnect Protocol over Ethernet

The protocol interfaces to an intelligent sensor and provides data gathering using a PC application. Stennis Space Center, Mississippi Quality measurements for design validation and certification requirements sometimes require hundreds or thousands of sensors and actuators. Maintaining such a complex system is difficult, especially over an extended time period and inevitable personnel changes. Many hours are spent tracking down sensor problems related to the sensor, associated cables, mounting hardware, or some part of the data acquisition system. These are expensive, labor-intensive hours that consume valuable technical resources.

Posted in: Briefs, Sensors

Read More >>

Active Remote-Sensing Radiometer

This technology can be used for security screening and security imaging, as well as automotive navigation in dust and fog conditions where machine vision performs poorly. NASA’s Jet Propulsion Laboratory, Pasadena, California Millimeter-wave (mm-wave) imaging techniques are already a popular solution for imaging through dust and fog. While mm-wave offers excellent penetration to dust when compared with infrared or optical sensing, the longer wavelengths create many problems associated with the specular response of surfaces at mm-wave. Generally, at mm-wave, the geometry and orientation of the target object has a larger influence on captured contrast than material properties by several orders of magnitude. While these effects can be somewhat mitigated with a radar imager, there is still a large contrast dependence on beam-target angle, and images are still entirely derived from geometry instead of material compositions.

Posted in: Briefs, Sensors

Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.