Special Coverage

Clamshell Sampler
Shape Memory Alloy Rock Splitter
Deployable Extra-Vehicular Activity Platform (DEVAP) for Planetary Surfaces
2016 Create The Future Design Contest Open For Entries
The Future of Exploration Starts With 3D Printing
Home

High-Bandwidth, Wide Field-of-View, Ultra-Sensitive, Radiation-Hardened, Short-Wave Infrared (SWIR) Receiver

Goddard Space Flight Center, Greenbelt, Maryland Every LiDAR design faces the classic balancing act of signal versus noise. In order to maximize the range of a LiDAR, a receiver must amplify fractions of a micro-amp of photo current into a usable range for signal processing to occur, but without adding significant amounts of noise. Additionally, LiDAR receiver designs must exhibit very wide dynamic ranges because of the uncertainty in return signal amplitude. Meeting all these requirements in a small size, weight, and power form factor while keeping costs low is a major challenge.

Posted in: Briefs, Electronics

Read More >>

Magnetometer for Vectorized Field Sensing via Zero-Field, Spin-Dependent Recombination in Silicon Carbide Microelectronics

This self-calibrating, solid-state-based magnetometer is intended for miniaturized applications in high-temperature and high-radiation environments. NASA’s Jet Propulsion Laboratory, Pasadena, California The proposed technology involves the sensitive detection of magnetic fields using the zero-field, spin-dependent recombination (SDR) phenomenon that naturally arises from atomic-scale, deep-level defects intrinsic to silicon carbide (SiC) microelectronics. The SDR phenomenon enables the fabrication of SiC-based magnetic field sensing diodes that are ideal for the development of miniaturized and purely electrical-based magnetometers.

Posted in: Briefs, Electronics

Read More >>

Flash LIDAR Emulator

Langley Research Center, Hampton, Virginia The Flash LIDAR Emulator is a computer system designed to be functionally equivalent to a Flash LIDAR sensor camera. The system has the same hardware interfaces as the sensor, and produces images of comparable quality to the flash LIDAR sensor in real time (30 frames per second). The emulator is then used as a substitute for the LIDAR camera during development and testing of the software algorithms and hardware systems that interface with the camera. The emulator software was custom-developed entirely in-house, and integrates tools and techniques from several computer fields, including parallel processing, ray-tracing, geometric optimization, CPU optimization, CameraLink interfaces, lowlevel networking, and GPU-based general computing. The software was designed to run on an 8-processor Dell workstation with an NVIDIA graphics card to support general-purpose GPU computing, and CameraLink and network interfaces to support the hardware interfaces of the Flash LIDAR camera.

Posted in: Briefs, Electronics

Read More >>

Nanotube-Based Device Cooling System

These cooling systems can be used for electronic devices in the computer manufacturing, thermal management, and semiconductor industries. Ames Research Center, Moffett Field, California Carbon nanotubes (CNTs) are being studied for use in high-strength/lowweight composites and other applications. Recent research on thermal dissipation materials for high-power electronic devices is generating a lot of interest in various industries. Carbon nano tubes have attracted much attention due to their extraordinary mechanical and unique electronic properties. Computer chips have been subjected to higher and higher thermal loads, and it is challenging to find new ways to perform heat dissipation. As a result, heat dissipation demand for computer systems is increasing dramatically.

Posted in: Briefs, Electronic Components, Thermal Management

Read More >>

Reliability Assessment of CCGA 1752 Advanced Interconnect Kyocera Packages for Extreme Thermal Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California Ceramic Column Grid Array (CCGA) packages have been increasing in use based on advantages such as high interconnect density, very good thermal and electrical performance, compatibility with standard surface-mount packaging assembly processes, etc. These packages are to be used in space applications such as logic and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. The assessment of reliability of CCGA 1752 Kyocera packages is of paramount importance to space applications.

Posted in: Briefs

Read More >>

Pressure Sensor Using Piezoelectric Bending Resonators

This technology applies to any application in which high-pressure measurement is required. NASA’s Jet Propulsion Laboratory, Pasadena, California A pressure sensor was developed based on a piezoelectric bending resonator. The resonator is covered and mechanically coupled with a sealed enclosure. The impedance spectrum of the resonator changes with the deformation of the enclosure induced by pressure or force applied to the enclosure. The changes in the impedance can be mapped to exchanges in the external environment, and the shifts in the resonance can be used to track the pressure.

Posted in: Briefs, Sensors

Read More >>

Full-Field Inverse Finite Element Method for Deformed Shape- and Stress-Sensing of Plate and Shell Structures

Real-time reconstruction of full-field structural displacements helps provide feedback to the actuation and control systems of aerospace vehicles with morphed-wing architecture. Langley Research Center, Hampton, Virginia Structural health management systems that, by way of real-time monitoring, help mitigate accidents due to structural failures, will become integral technologies of the next-generation aerospace vehicles. Advanced sensor arrays and signal processing technologies are utilized to provide optimally distributed in-situ sensor information related to the states of strain, temperature, and aerodynamic pressure. To process the massive quantities of measured data, and to infer physically admissible structural behavior, requires robust and computationally efficient physics-based algorithms.

Posted in: Briefs, Sensors

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.