Special Coverage

Home

Tactile Robotic Topographical Mapping Without Force or Contact Sensors

A “tap test” yields data on a succession of surface points. A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available.

Posted in: Briefs

Read More >>

Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

This sensor would be inexpensive and easy to fabricate. An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in “Magnetic-Field-Response Measurement-Acquisition System” (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28.

Posted in: Briefs

Read More >>

Gas Sensors Based on Coated and Doped Carbon Nanotubes

Large specific surface areas of nanotubes could enable attainment of high sensitivities. Efforts are underway to develop inexpensive, low-power electronic sensors, based on single-walled carbon nanotubes (SWCNTs), for measuring part-per-million and part-per-billion of selected gases (small molecules) at room temperature. Chemically unmodified SWCNTs are mostly unresponsive to typical gases that one might wish to detect. However, the electrical resistances of SWCNTs can be made to vary with concentrations of gases of interest by coating or doping the SWCNTs with suitable materials. Accordingly, the basic idea of the present development efforts is to incorporate thus-treated SWCNTs into electronic devices that measure their electrical resistances.

Posted in: Briefs

Read More >>

Squirrel Stress



Posted in: Blog

Read More >>

NASA Briefs

The Marshall Space Flight Center is working on the use of controlled illumination by light-emitting diodes (LEDs) to treat mucositis and to accelerate healing of wounds. The basic idea is to illuminate the affected area of a patient with light of an intensity, duration, and wavelength chosen to produce a therapeutic effect while generating only a minimal amount of heat. Click here for more info.

Posted in: Blog

Read More >>

Tat Circuit



Posted in: Blog

Read More >>

Modeling Tool Advances Rotorcraft Design

Often times, when people think of NASA, they think of space travel. The first “A” in NASA, however, is for “Aeronautics,” and the Agency has always held as one of its tenets to explore, define, and solve issues in aircraft design. Just as often as NASA is associated with space travel, when people hear aeronautics, they often think of airplanes, but part of NASA’s aeronautics program is one of the most advanced rotorcraft design and test programs in the world.

Posted in:

Read More >>