Special Coverage

Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Home

Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates

A method has been developed for fabricating gratings on flat substrates, and then reproducing the groove pattern on a curved (concave or convex) substrate and a corresponding grating device. First, surface relief diffraction grating grooves are formed on flat substrates. For example, they may be fabricated using photolithography and reactive ion etching, maskless lithography, holography, or mechanical ruling. Then, an imprint of the grating is made on a deformable substrate, such as plastic, polymer, or other materials using thermoforming, hot or cold embossing, or other methods. Interim stamps using electroforming, or other methods, may be produced for the imprinting process or if the same polarity of the grating image is required. The imprinted, deformable substrate is then attached to a curved, rigid substrate using epoxy or other suitable adhesives. The imprinted surface is facing away from the curved rigid substrate.

Posted in: Briefs, TSP, Manufacturing & Prototyping

Read More >>

Fabricating Radial Groove Gratings Using Projection Photolithography

Projection photolithography has been used as a fabrication method for radial grove gratings. Use of photolithographic method for diffraction grating fabrication represents the most significant breakthrough in grating technology in the last 60 years, since the introduction of holographic written gratings. Unlike traditional methods utilized for grating fabrication, this method has the advantage of producing complex diffractive groove contours that can be designed at pixel-by-pixel level, with pixel size currently at the level of 45×45 nm. Typical placement accuracy of the grating pixels is 10 nm over 30 nm. It is far superior to holographic, mechanically ruled or direct e-beam written gratings and results in high spatial coherence and low spectral cross-talk. Due to the smooth surface produced by reactive ion etch, such gratings have a low level of randomly scattered light. Also, due to high fidelity and good surface roughness, this method is ideally suited for fabrication of radial groove gratings.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Method for Measuring the Volume-Scattering Function of Water

The volume scattering function (VSF) of seawater affects visibility, remote sensing properties, in-water light propagation, lidar performance, and the like. Currently, it’s possible to measure only small forward angles of VSF, or to use cumbersome, large, and non-auton - omous systems. This innovation is a method of measuring the full range of VSF using a portable instrument.

Posted in: Briefs, Physical Sciences

Read More >>

Method of Heating a Foam-Based Catalyst Bed

A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters.

Posted in: Briefs, Physical Sciences

Read More >>

Small Deflection Energy Analyzer for Energy and Angular Distributions

The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth’s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere.

Posted in: Briefs, Physical Sciences

Read More >>

Polymeric Bladder for Storing Liquid Oxygen

A proposed system for storing oxygen in liquid form and dispensing it in gaseous form is based on (1) initial subcooling of the liquid oxygen; (2) containing the liquid oxygen in a flexible vessel; (3) applying a gas spring to the flexible vessel to keep the oxygen compressed above the saturation pressure and, thus, in the liquid state; and (4) using heat leakage into the system for vaporizing the oxygen to be dispensed. In a typical prior system based on these principles, the flexible vessel is a metal bellows housed in a rigid tank, and the gas spring consists of pressurized helium in the tank volume surrounding the bellows. Unfortunately, the welds in the bellows corrugations are subject to fatigue, and, because bellows have large ullage, a correspondingly large fraction of the oxygen content cannot be expelled.

Posted in: Briefs, Physical Sciences

Read More >>

Pyrotechnic Simulator/Stray-Voltage Detector

The concept for a dual test item has been developed for use in simulating live initiators/detonators during ground testing to verify the proper operation of the safing and firing circuitry for ground and flight systems ordnance as well as continuous monitoring for any stray voltages. Previous ordnance simulators have consisted of fuses, flash bulbs, inert devices with bridge wires, and actual live ordnance items mounted in test chambers. Stray voltage detectors have included devices connected to the firing circuits for continuous monitoring and a final no-voltage test just prior to ordnance connection. The purpose of this combined ordnance simulation and stray-voltage detection is to provide an improved and comprehensive method to ensure the ordnance circuitry is verified safe and operational.

Posted in: Briefs, Physical Sciences

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.