Special Coverage

Home

Accumulate-Repeat-Accumulate-Accumulate Codes

Fast, high-performance coders and decoders could be designed. Accumulate-repeat- accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate- repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity- check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

Posted in: Information Sciences, Briefs

Read More >>

State-Estimation Algorithm Based on Computer Vision

Available data are utilized optimally without incurring an excessive computational burden. An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications — for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines.

Posted in: Information Sciences, Briefs

Read More >>

Hybrid Automated Diagnosis of Discrete/Continuous Systems

Integration of complementary tools offers new approach to hybrid diagnosis. A recently conceived method of automated diagnosis of a complex electromechanical system affords a complete set of capabilities for hybrid diagnosis in the case in which the state of the electromechanical system is characterized by both continuous and discrete values (as represented by analog and digital signals, respectively). The method is an integration of two complementary diagnostic systems: (1) beacon-based exception analysis for multimissions (BEAM), which is primarily useful in the continuous domain and easily performs diagnoses in the presence of transients; and (2) Livingstone, which is primarily useful in the discrete domain and is typically restricted to quasisteady conditions. BEAM has been described in several prior NASA Tech Briefs articles: “Software for Autonomous Diagnosis of Complex Systems” (NPO-20803), Vol. 26, No. 3 (March 2002), page 33; “Beacon-Based Exception Analysis for Multimissions” (NPO-20827), Vol. 26, No. 9 (September 2002), page 32; “Wavelet- Based Real-Time Diagnosis of Complex Systems” (NPO-20830), Vol. 27, No. 1 (January 2003), page 67; and “Integrated Formulation of Beacon-Based Exception Analysis for Multimissions” (NPO-21126), Vol. 27, No. 3 (March 2003), page 74.

Posted in: Information Sciences, Briefs

Read More >>

Algorithm Plans Collision-Free Path for Robotic Manipulator

This algorithm is designed to make minimal demands upon computational resources. An algorithm has been developed to enable a computer aboard a robot to autonomously plan the path of the manipulator arm of the robot to avoid collisions between the arm and any obstacle, which could be another part of the robot or an external object in the vicinity of the robot. In simplified terms, the algorithm generates trial path segments and tests each segment for potential collisions in an iterative process that ends when a sequence of collision-free segments reaches from the starting point to the destination. The main advantage of this algorithm, relative to prior such algorithms, is computational efficiency: the algorithm is designed to make minimal demands upon the limited computational resources available aboard a robot.

Posted in: Information Sciences, Briefs

Read More >>

Automated Recognition of 3D Features in GPIR Images

Enhanced images emphasizing features of interest are prepared for scrutiny by human analysts. A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators.

Posted in: Information Sciences, Briefs

Read More >>

Representing Functions in n Dimensions to Arbitrary Accuracy

Computation can be simplified in cases in which data are noiseless. A method of approximating a scalar function of n independent variables (where n is a positive integer) to arbitrary accuracy has been developed. This method is expected to be attractive for use in engineering computations in which it is necessary to link global models with local ones or in which it is necessary to interpolate noiseless tabular data that have been computed from analytic functions or numerical models in n-dimensional spaces of design parameters.

Posted in: Information Sciences, Briefs

Read More >>

Amplified Thermionic Cooling Using Arrays of Nanowires

Cooling devices could be highly miniaturized. A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means.

Posted in: Physical Sciences, Briefs

Read More >>

White Papers

The Road to Lightweight Vehicles
Sponsored by HP
Metal Injection Molding Turns the Volume Up, and Down
Sponsored by Proto Labs
SunWize Power Systems – Guidelines for Choosing the Right Product
Sponsored by SunWize
An Alternative to Check Fixtures
Sponsored by Faro
Automated Inspection Lowers Solar Cell Costs
Sponsored by Teledyne DALSA
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions

White Papers Sponsored By: