Special Coverage

High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Lightweight Internal Device to Measure Tension in Hollow- Braided Cordage
System, Apparatus, and Method for Pedal Control
Dust Tolerant Connectors
Home

In-Store Hair Analysis Tools

A company is seeking tools and devices that can be used instore to quickly classify hair types based on measured hair properties like hair thickness and/or damage level. Technologies include hair diagnostic devices/tools that can evaluate at least one of the following parameters: structure information; physical properties such as amount of curl, tensile strength, and stiffness; and cosmetic properties such as smoothness, friction, and resistance to frizz. Tools must be easy to use in-store, and results must be sensitive enough to differentiate between ranges of hair types. Respond to this TechNeed at: Email: nasatech@yet2.com Phone: 781-972-0600

Posted in: NASA Tech Needs

Read More >>

Submillimeter-Wave Amplifier Module With Integrated Waveguide Transitions

This technique can be used in submillimeter-wave imaging in homeland security, weapons detection, and commercial test equipment. To increase the usefulness of monolithic millimeter-wave integrated circuit (MMIC) components at submillimeter-wave frequencies, a chip has been designed that incorporates two integrated, radial E-plane probes with an MMIC amplifier in between, thus creating a fully integrated waveguide module. The integrated amplifier chip has been fabricated in 35-nm gate length InP high-electron-mobility-transistor (HEMT) technology. The radial probes were mated to grounded coplanar waveguide input and output lines in the internal amplifier. The total length of the internal HEMT amplifier is 550 μm, while the total integrated chip length is 1,085 μm. The chip thickness is 50 μm with the chip width being 320 μm.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

Dr. Woodrow Whitlow Jr., Director, John H. Glenn Research Center, Cleveland, OH

As Director of NASA’s John H. Glenn Research Center in Cleveland, Ohio, Dr. Woodrow Whitlow Jr. controls an annual budget of approximately $650 million and manages a labor force comprised of roughly 1,619 civil service employees who are supported by 1754 contractors working in more than 500 specialized research facilities.

Posted in: Who's Who

Read More >>

Economical Implementation of a Filter Engine in an FPGA

There are numerous potential uses in general signal processing. A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

Improved Joining of Metal Components to Composite Structures

Uncured composite material is intertwined with metal studs, then cured. Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techniques, which create a “monolithic,” well-integrated and seamlessly functional structure.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Machined Titanium Heat-Pipe Wick Structure

Wicks are fabricated separately, then inserted in tubes. Wick structures fabricated by machining of titanium porous material are essential components of lightweight titanium/ water heat pipes of a type now being developed for operation at temperatures up to 530 K in high-radiation environments. In the fabrication of some prior heat pipes, wicks have been made by extruding axial grooves into aluminum — unfortunately, titanium cannot be extruded. In the fabrication of some other prior heat pipes, wicks have been made by in-situ sintering of metal powders shaped by the use of forming mandrels that are subsequently removed, but in the specific application that gave rise to the present fabrication method, the required dimensions and shapes of the heat-pipe structures would make it very difficult if not impossible to remove the mandrels due to the length and the small diameter.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2

These electrodes have relatively low area-specific resistances. Gadolinia-doped ceria, or GDC, (Gd0.4Ce0.6O2–δ, where the value of δ in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high- temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer.

Posted in: Briefs, TSP, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.