Home

Kennedy Space Center

In direct response to the National Research Council’s report “Capabilities for the Future: An Assessment of NASA Laboratories for Basic Research, 2010,” the Space Technology program was born and formally approved by the NASA Administrator in 2009. Consisting of ten technology development and innovation programs that are broadly applicable to the Agency’s aeronautics, science, and exploration enterprises, the program is managed by the Office of the Chief Technologist (OCT) through the formation of three divisions: Early Stage Innovation, Game Changing Technology, and Crosscutting Compatibility Demonstrations.

altKennedy Space Center (KSC), well-known for ground operations and launch for the Space Shuttle, has provided research in robotics, science, engineering, human factors, and many areas needed to get back to the Moon and to go to Mars and beyond. Much of this research has led to commercial products that have benefited other industries and agencies. The new agency alignment of research and technology capabilities has meant an increased focus on technology at Kennedy. Kennedy has eight recognized research and technology capability areas wherein broadly applicable technologies are developed for multiple customers and to satisfy national needs. The following is a look at four KSC technologies being developed in two of these areas.

Storage, Distribution, and Conservation of Fluids (Cryogens, Liquids, Gases)

Hydrogen is an inherently dangerous gas due to its combustibility and invisible flame. Area sensors only detect the presence, not the source of a hydrogen leak. This presents problems in high wind environments such as launch pads where a leak may not be detected at all. The Hydrogen Tape, developed in collaboration with the Florida Solar Energy Center, overcomes these limitations by providing users with an easily deployable visual indication system that can precisely pinpoint the leak. This tape can effectively identify leaks in pipe flanges and connections that area sensors and flame cameras may miss. Work is also underway at KSC to develop HyperTape, a tape that can visually detect the presence of hypergols, another dangerous but ubiquitous chemical.

KSC researchers were able to achieve between 25-50 percent reductions in thermal heat transfer without greatly affecting the mechanical properties or processing conditions of Aerogel composite materials when compared to the base materials. This approach is important to reduce weight of lunar habitat systems, cryogenic storage tanks, and piping where weight and thermal conductivity are crucial to mission success.

While this research benefits KSC operations, which require the use of large amounts of cryogenic liquids from fuels (such as liquid hydrogen and oxygen) to purge gases (such as liquid helium), it will also benefit commercial businesses. In particular, the oil and gas industry uses and processes low-temperature commodities such as liquefied hydrocarbons, where any decrease in thermal conductivity reduces cooling costs and boil-off, directly impacting the company’s bottom line. Advanced building products, such as hardy plank siding, wood decking, and roofing materials containing AeroPlastic™, would reduce home energy loss through improved thermal insulation. The Aerofoam™ technology could also have medical industry applications in maintaining required temperatures of medicines and pre-transplant storage during long-term shipment.