Home

Stacked Transformer for Driver Gain and Receive Signal Splitting

In a high-speed signal transmission system that uses transformer coupling, there is a need to provide increased transmitted signal strength without adding active components. This invention uses additional transformers to achieve the needed gain. The prior art uses stronger drivers (which require an IC redesign and a higher power supply voltage), or the addition of another active component (which can decrease reliability, increase power consumption, reduce the beneficial effect of serializer/deserializer preemphasis or deemphasis, and/or interfere with fault containment mechanisms), or uses a different transformer winding ratio (which requires redesign of the transformer and may not be feasible with high-speed signals that require a 1:1 winding ratio).

This invention achieves the required gain by connecting the secondaries of multiple transformers in series. The primaries of these transformers are currently either connected in parallel or are connected to multiple drivers. There is also a need to split a receive signal to multiple destinations with minimal signal loss. Additional transformers can achieve the split. The prior art uses impedance-matching series resistors that cause a loss of signal. Instead of causing a loss, most instantiations of this invention would actually provide gain. Multiple transformers are used instead of multiple windings on a single transformer because multiple windings on the same transformer would require a redesign of the transformer, and may not be feasible with high-speed transformers that usually require a bifilar winding with a 1:1 ratio. This invention creates the split by connecting the primaries of multiple transformers in series. The secondary of each transformer is connected to one of the intended destinations without the use of impedance-matching series resistors.

This work was done by Kevin R. Driscoll of Honeywell for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809.

Title to this invention has been waived under the provisions of the National Aeronautics and Space Act {42 U.S.C. 2457(f)}, to Honeywell. Inquiries concerning licenses for its commercial development should be addressed to:

   Honeywell
   P.O. Box 52199
   Phoenix, AZ 85072-2199

MSC-24854-1/6-1