Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Home

This technology combines the SansEC circuit with a magnetic field reader to produce a spectroscopy readout.

This innovation builds off of NASA Langley Research Center’s SansEC sensing system. SansEC is an open-circuit, resonant sensor that needs no electrical connections (thus the name SansEC or “without electrical connection”). This technology combines the SansEC circuit with a magnetic field reader to allow for detection of magnetic or electric field changes to produce a spectroscopy readout.

A promising application for this technology is bore hole geological spectroscopy.

The technology is a method of identifying material anomalies and defects on or within a material by observing and quantifying how a localized change in either conductivity, permeability, or permittivity changes the responding electric field and magnetic fields. It has many advantages over typical spectroscopy methods, particularly because typical methods only measure changes in the electric field.

This advancement will allow for potentially deeper detection of a material’s abnormalities/defects (including subsurface measurements) with limited electrical requirements. The technology has applications as diverse as medical oncology screenings or surface measurements of aeronautic skins.

Another promising application is bore hole geological spectroscopy. In such an application, an array of sensors could be embedded into bore hole drills for exploratory deep wells. As the drill tooling slides past the bore hole wall, spectroscopic sampling of the side walls reveals important dielectric property information that is highly useful to prospectors and geologists in determining the probability of specific resources that may exist in the subterranean geology.

Other potential applications include nondestructive testing, including identifying delamination in non-conductive composites; hazardous material monitoring; zero-gravity fluid volume measurement; and noninvasive medical monitoring and scanning, including oncology applications.

NASA is actively seeking licensees to commercialize this technology. Please contact The Technology Gateway at This email address is being protected from spambots. You need JavaScript enabled to view it. to initiate licensing discussions. Follow this link for more information: here

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.